Telegram Group & Telegram Channel
С чего начать ЛЛМ-проект?

Возьмем два проекта с ЛЛМ:
1) ИИ-ассистент, отвечающий на вопросы школьников по конкретному курсу.
2) ИИ-корректор, подсвечивающий все ошибки в документе (в том числе, в таблицах и на картинках).

Опыт и здравый смысл подсказывают, что начать надо с обсуждения критериев успеха! Как система будет тестироваться, какие метрики нужно считать, какие пороговые значения для каждой из метрик?

Краткое описание используемых нашей командой Standard Data подходов:
1) ИИ-ассистент для школьников
- прогон ассистента на валидационном тестовом наборе вопросов с автоматической оценкой ответов по критериям с помощью подхода LLM as a judge;
- обратная связь от живых людей (обычно от преподавателей или методистов) в процессе ручного тестирования ассистента.
- итерируемся по обоим этапам.
Отдельный хороший вопрос, как корректно настроить метрики из автоматической оценки, чтобы они осмысленно бились с оценками от живых людей на реальном тесте — нетривиальная задача!

2) ИИ-корректор
- создание набора материалов для валидации. Например, для начала несколько страниц плотного текста из нужной сферы (юридическая, HR и тд). Разметка всех имеющихся ошибок и их местоположения в документе;
- поиск и вывод местоположения и типов всех ошибок в тексте с помощью ЛЛМ (или связка классических инструментов + ЛЛМ);
- подсчет нужных метрик вроде accuracy, recall, precision по отдельным типам ошибок.

Обратите внимание, что второй проект гораздо проще и однозначнее в плане оценки качества, хотя и там есть свои подводные камни (например, если ИИ-корректор еще должен работать с оформлением, стилем и тд)! А в первом очень много субъективной оценки диалогов, там почти невозможно на старте учесть все нужные критерии качества, как и рассмотреть всевозможные сценарии общения с школьником. Кроме того, обратите внимание, что процесс тестирования ИИ-ассистента подразумевает активное вовлечение живых тестировщиков, а это тоже отдельная нетривиальная задача на стороне заказчика –– привлечь нужное количество достаточно заинтересованных сотрудников!

В качестве завершения, ловите два полезных видео и короткий курс про оценку систем на основе ЛЛМ: видео 1, видео 2, короткий курс.



group-telegram.com/experiment_ai/36
Create:
Last Update:

С чего начать ЛЛМ-проект?

Возьмем два проекта с ЛЛМ:
1) ИИ-ассистент, отвечающий на вопросы школьников по конкретному курсу.
2) ИИ-корректор, подсвечивающий все ошибки в документе (в том числе, в таблицах и на картинках).

Опыт и здравый смысл подсказывают, что начать надо с обсуждения критериев успеха! Как система будет тестироваться, какие метрики нужно считать, какие пороговые значения для каждой из метрик?

Краткое описание используемых нашей командой Standard Data подходов:
1) ИИ-ассистент для школьников
- прогон ассистента на валидационном тестовом наборе вопросов с автоматической оценкой ответов по критериям с помощью подхода LLM as a judge;
- обратная связь от живых людей (обычно от преподавателей или методистов) в процессе ручного тестирования ассистента.
- итерируемся по обоим этапам.
Отдельный хороший вопрос, как корректно настроить метрики из автоматической оценки, чтобы они осмысленно бились с оценками от живых людей на реальном тесте — нетривиальная задача!

2) ИИ-корректор
- создание набора материалов для валидации. Например, для начала несколько страниц плотного текста из нужной сферы (юридическая, HR и тд). Разметка всех имеющихся ошибок и их местоположения в документе;
- поиск и вывод местоположения и типов всех ошибок в тексте с помощью ЛЛМ (или связка классических инструментов + ЛЛМ);
- подсчет нужных метрик вроде accuracy, recall, precision по отдельным типам ошибок.

Обратите внимание, что второй проект гораздо проще и однозначнее в плане оценки качества, хотя и там есть свои подводные камни (например, если ИИ-корректор еще должен работать с оформлением, стилем и тд)! А в первом очень много субъективной оценки диалогов, там почти невозможно на старте учесть все нужные критерии качества, как и рассмотреть всевозможные сценарии общения с школьником. Кроме того, обратите внимание, что процесс тестирования ИИ-ассистента подразумевает активное вовлечение живых тестировщиков, а это тоже отдельная нетривиальная задача на стороне заказчика –– привлечь нужное количество достаточно заинтересованных сотрудников!

В качестве завершения, ловите два полезных видео и короткий курс про оценку систем на основе ЛЛМ: видео 1, видео 2, короткий курс.

BY Эксперименты с ИИ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/experiment_ai/36

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said.
from ye


Telegram Эксперименты с ИИ
FROM American