Telegram Group & Telegram Channel
AlphaEvolve [2025]

Очень простым критерием, по которому я отсекаю интересные "приложения AI в науке" от неинтересных, это то, была ли в итоге решена какая-то нерешённая задача. Deepmind имеет неплохую репутацию в этом вопросе, и я уже писал посты про их подобные работы - AlphaTensor, AutoNumerics-Zero и некоторые другие.

Перед нами ещё одна работа, выбивающая SOTA на разного рода математических задачах. Я очень обрадовался, увидев первым автором Сашу Новикова, с которым когда-то капельку поработал, будучи ещё безмозглым пиздюком.

Итак, перед нами идейный потомок FunSearch. Это хорошо проделанная практическая работа по масштабированию, однако, основная идея изменилась не особо.

Алгоритм применим для поиска решений "NP-задач", т.е. в которых возможна быстрая (автоматическая) оценка решения. Это вариация эволюционного поиска программы, который поддерживает популяцию решений и вместо примитивных операций над кодом использует LLM для генерации новых кандидатов.

Дьявол, конечно, в деталях, и над ними как раз хорошо поработали. Тут тебе и комбинация разных LLM, и целая процедура генерации промпта, включающая параллельно оптимизируемый мета-промпт, и оптимизация диффа вместо программы, и LLM-generated feedback, и, конечно, reward design.

Последнее особенно важно. Дело в том, что эволюционный алгоритм применяется для оптимизации какой-то непрерывной награды. Если у вас есть 10000 вариантов, из которых 9999 одинаково неработающие и 1 работающий, то все эти алгоритмы умного перебора не имеют никакого смысла.

Ставя задачу "докажите утверждение X" в пространстве всех математических доказательств, у вас нет способа сравнить два неправильных черновика между собой. Но в некоторых случаях инструменты сравнения всё же имеются.

В качестве первого примера применения алгоритма в статье описан поиск способов умножать матрицы за меньшее число умножений - та же тема, что и в AlphaTensor. Любой алгоритм по умножению 2 матриц может быть представлен как разложение определённого 3D-тензора в несколько тензоров ранга 1. Количество тензоров в разложении и определяет количество умножений. Пишите в комментариях, если это враньё, я просто цитирую.

Как я понял, находить такие разложения можно с помощью градиентной оптимизации - тензоры в разложении оптимизируются градиентным спуском под то, чтобы результирующий тензор совпадал с желаемым.

Но нет, AlphaEvolve не оптимизирует разложение. Он генерирует алгоритм, генерирующий разложение. В качестве затравки ему как раз и даётся тот самый метод градиентного спуска, после чего AlphaEvolve пытается его модифицировать. И у получаемого кода есть отличная мера качества - минимальное количество тензоров, на которое получилось разложить.

Представьте, что самый базовый алгоритм может сгенерировать разложение на 50 тензоров, а разложение на 49 уже не сходится. Если кандидат от AlphaEvolve не сошёлся даже для 50, то сразу отправляется на помойку, но если вдруг смог разложить на 49, то получает более высокий скор в рамках эволюции. Каждый кандидат запускается последовательно на всё более сложной задаче - его просят разложить на 49, 48, 47 тензоров и т.д., и со временем получаются всё более и более крутые алгоритмы оптимизации.

В результате такого процесса авторам удалось отыскать с помощью улучшенной оптимизации кучу новых рекордно коротких разложений и сильно обойти AlphaTensor, который был заточен именно под эту задачу. В статье есть ещё много примеров успешных применений AlphaEvolve на практике, каждое из которых можно было бы разбирать отдельными постами.

Данная работа является крутейшим примером того, как LLM может быть использован для научных открытий. Нет, не надо генерировать вот эту срань. Нужно применить человеческую креативность для того, чтобы переформулировать "NP-задачу" в задачу генерации кода, который можно оценить непрерывным скором, и только потом дёргать LLM в качестве генератора кандидатов.

Но это пока кто-то не изобретёт что-нибудь получше.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/283
Create:
Last Update:

AlphaEvolve [2025]

Очень простым критерием, по которому я отсекаю интересные "приложения AI в науке" от неинтересных, это то, была ли в итоге решена какая-то нерешённая задача. Deepmind имеет неплохую репутацию в этом вопросе, и я уже писал посты про их подобные работы - AlphaTensor, AutoNumerics-Zero и некоторые другие.

Перед нами ещё одна работа, выбивающая SOTA на разного рода математических задачах. Я очень обрадовался, увидев первым автором Сашу Новикова, с которым когда-то капельку поработал, будучи ещё безмозглым пиздюком.

Итак, перед нами идейный потомок FunSearch. Это хорошо проделанная практическая работа по масштабированию, однако, основная идея изменилась не особо.

Алгоритм применим для поиска решений "NP-задач", т.е. в которых возможна быстрая (автоматическая) оценка решения. Это вариация эволюционного поиска программы, который поддерживает популяцию решений и вместо примитивных операций над кодом использует LLM для генерации новых кандидатов.

Дьявол, конечно, в деталях, и над ними как раз хорошо поработали. Тут тебе и комбинация разных LLM, и целая процедура генерации промпта, включающая параллельно оптимизируемый мета-промпт, и оптимизация диффа вместо программы, и LLM-generated feedback, и, конечно, reward design.

Последнее особенно важно. Дело в том, что эволюционный алгоритм применяется для оптимизации какой-то непрерывной награды. Если у вас есть 10000 вариантов, из которых 9999 одинаково неработающие и 1 работающий, то все эти алгоритмы умного перебора не имеют никакого смысла.

Ставя задачу "докажите утверждение X" в пространстве всех математических доказательств, у вас нет способа сравнить два неправильных черновика между собой. Но в некоторых случаях инструменты сравнения всё же имеются.

В качестве первого примера применения алгоритма в статье описан поиск способов умножать матрицы за меньшее число умножений - та же тема, что и в AlphaTensor. Любой алгоритм по умножению 2 матриц может быть представлен как разложение определённого 3D-тензора в несколько тензоров ранга 1. Количество тензоров в разложении и определяет количество умножений. Пишите в комментариях, если это враньё, я просто цитирую.

Как я понял, находить такие разложения можно с помощью градиентной оптимизации - тензоры в разложении оптимизируются градиентным спуском под то, чтобы результирующий тензор совпадал с желаемым.

Но нет, AlphaEvolve не оптимизирует разложение. Он генерирует алгоритм, генерирующий разложение. В качестве затравки ему как раз и даётся тот самый метод градиентного спуска, после чего AlphaEvolve пытается его модифицировать. И у получаемого кода есть отличная мера качества - минимальное количество тензоров, на которое получилось разложить.

Представьте, что самый базовый алгоритм может сгенерировать разложение на 50 тензоров, а разложение на 49 уже не сходится. Если кандидат от AlphaEvolve не сошёлся даже для 50, то сразу отправляется на помойку, но если вдруг смог разложить на 49, то получает более высокий скор в рамках эволюции. Каждый кандидат запускается последовательно на всё более сложной задаче - его просят разложить на 49, 48, 47 тензоров и т.д., и со временем получаются всё более и более крутые алгоритмы оптимизации.

В результате такого процесса авторам удалось отыскать с помощью улучшенной оптимизации кучу новых рекордно коротких разложений и сильно обойти AlphaTensor, который был заточен именно под эту задачу. В статье есть ещё много примеров успешных применений AlphaEvolve на практике, каждое из которых можно было бы разбирать отдельными постами.

Данная работа является крутейшим примером того, как LLM может быть использован для научных открытий. Нет, не надо генерировать вот эту срань. Нужно применить человеческую креативность для того, чтобы переформулировать "NP-задачу" в задачу генерации кода, который можно оценить непрерывным скором, и только потом дёргать LLM в качестве генератора кандидатов.

Но это пока кто-то не изобретёт что-нибудь получше.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/283

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives? Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications.
from ye


Telegram Knowledge Accumulator
FROM American