Telegram Group & Telegram Channel
Чем так занят усердный бобёр?

Продолжаю свою телегу про Busy Beaver(N). Напомню, что эта функция равна времени работы самой долгой машины Тьюринга из N состояний, исключая впадающие в бесконечный цикл, которую запускают на бесконечной ленте из нулей.

BB(4) равно 107 - на 4 состояниях особо не развернёшься, а вот BB(5) равна уже 47,176,870. Чтобы осознать её прикол, нам нужно сделать небольшое отступление и посмотреть на одну из простейших (на вид) открытых проблем в математике. Рассмотрим функцию такого вида:

f(x) = x/2, если x чётное
f(x) = 3n+1, если x нечётное


Что, если взять какое-нибудь N и начать применять к нему такую функцию много раз? 5->16->8->4->2->1. Так называемая гипотеза Коллатца заключается в том, что из любого числа мы в итоге придём к 1. Это было подтверждено для чисел <10^21, но так и не было доказано для любого N. У Veritasium есть очень любопытное видео на эту тему.

Итак, функции, которые применяют определённую арифметическую операцию к числу в зависимости от остатка на деления, так и называют - Collatz-like. Их траектории выглядят практически случайными и могут долго колебаться, прежде чем придут в какое-то "финальное" состояние.

Да, вы всё правильно поняли - оказалось, что усердный бобёр из 5 состояний генерирует последовательность для Collatz-like функции от нуля следующего вида:

f(x) = 5(x/3) + 6, если x mod 3 = 0
f(x) = 5(x-1)/3 + 9, если x mod 3 = 1
f(x) = finish state, если x mod 3 = 2

То есть, вместо единицы, как в оригинале, "конечных точек" у неё бесконечно много. Так выглядит генерируемая бобром последовательность:

0->6->16->34->64->114->196->334->564->946->1584->2646->4416->7366->12284->finish

Я окунулся ещё глубже, изучил доказательство и симуляцию, чтобы понять, как это реально выглядит на ленте машины Тьюринга. В итоге пронаблюдал следующее цирковое представление.

Итак, определим такое состояние ленты C(m, n) - сначала m единиц, потом n раз по 001 и ещё 1 единичка в конце. Указатель при этом смотрит на ноль по соседству слева перед всей этой конструкцией. Машина проделывает следующее упражнение, начиная из состояния C(m, 0).

1) m единиц она превращает в ~m/3 троек 001, т.е. общая длина почти не меняется. C(m, n) -> C(0, (m+4)/3) или C(3, (m+3)/3), в зависимости от остатка от деления. В третьем случае машина как раз проваливается в своё конечное состояние.

2) Далее машина наступает на каждую 001, закрашивает нули и отправляется в самое начало ленты, добавляя ещё 2 единицы слева, а затем переходит к следующей 001. То есть, C(m, n) -> C(m+5, n-1).

3) Когда 001 заканчиваются и n снова равно 0, мы получили C(m_next, 0) и далее повторяем процедуру, начиная со пункта 1. Последовательность значений m_1, m_2. m_3, ... как раз и ведёт себя как Collatz-like ряд, описанный выше.

Машина работает десятки миллионов шагов, потому что для каждого добавления пяти единиц за одну 001 указатель пробегает туда-сюда через все уже записанные ранее единицы.

Честно говоря, меня всё это повергает в восторг. Самая долгая машина Тьюринга из 5 состояний совершенно не обязана была делать что-то, имеющее короткую арифметическую интерпретацию. Более того, оказывается, теоретические границы вычислимого имеют связи с реальными математическими проблемами.

Busy Beaver для 6 состояний неизвестен. Такой "простор" позволяет создавать монстров, например, так называемого Экспоненциального Коллатца: вместо умножения становится возможным применять экспоненту на каждом шаге. Но это далеко не предел - только за этот июнь было получено 2 принципиально новых результата - числа, которые возможно записать только в стрелочной нотации. А вы жалуетесь, что GPT-5 долго релизят.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/297
Create:
Last Update:

Чем так занят усердный бобёр?

Продолжаю свою телегу про Busy Beaver(N). Напомню, что эта функция равна времени работы самой долгой машины Тьюринга из N состояний, исключая впадающие в бесконечный цикл, которую запускают на бесконечной ленте из нулей.

BB(4) равно 107 - на 4 состояниях особо не развернёшься, а вот BB(5) равна уже 47,176,870. Чтобы осознать её прикол, нам нужно сделать небольшое отступление и посмотреть на одну из простейших (на вид) открытых проблем в математике. Рассмотрим функцию такого вида:

f(x) = x/2, если x чётное
f(x) = 3n+1, если x нечётное


Что, если взять какое-нибудь N и начать применять к нему такую функцию много раз? 5->16->8->4->2->1. Так называемая гипотеза Коллатца заключается в том, что из любого числа мы в итоге придём к 1. Это было подтверждено для чисел <10^21, но так и не было доказано для любого N. У Veritasium есть очень любопытное видео на эту тему.

Итак, функции, которые применяют определённую арифметическую операцию к числу в зависимости от остатка на деления, так и называют - Collatz-like. Их траектории выглядят практически случайными и могут долго колебаться, прежде чем придут в какое-то "финальное" состояние.

Да, вы всё правильно поняли - оказалось, что усердный бобёр из 5 состояний генерирует последовательность для Collatz-like функции от нуля следующего вида:

f(x) = 5(x/3) + 6, если x mod 3 = 0
f(x) = 5(x-1)/3 + 9, если x mod 3 = 1
f(x) = finish state, если x mod 3 = 2

То есть, вместо единицы, как в оригинале, "конечных точек" у неё бесконечно много. Так выглядит генерируемая бобром последовательность:

0->6->16->34->64->114->196->334->564->946->1584->2646->4416->7366->12284->finish

Я окунулся ещё глубже, изучил доказательство и симуляцию, чтобы понять, как это реально выглядит на ленте машины Тьюринга. В итоге пронаблюдал следующее цирковое представление.

Итак, определим такое состояние ленты C(m, n) - сначала m единиц, потом n раз по 001 и ещё 1 единичка в конце. Указатель при этом смотрит на ноль по соседству слева перед всей этой конструкцией. Машина проделывает следующее упражнение, начиная из состояния C(m, 0).

1) m единиц она превращает в ~m/3 троек 001, т.е. общая длина почти не меняется. C(m, n) -> C(0, (m+4)/3) или C(3, (m+3)/3), в зависимости от остатка от деления. В третьем случае машина как раз проваливается в своё конечное состояние.

2) Далее машина наступает на каждую 001, закрашивает нули и отправляется в самое начало ленты, добавляя ещё 2 единицы слева, а затем переходит к следующей 001. То есть, C(m, n) -> C(m+5, n-1).

3) Когда 001 заканчиваются и n снова равно 0, мы получили C(m_next, 0) и далее повторяем процедуру, начиная со пункта 1. Последовательность значений m_1, m_2. m_3, ... как раз и ведёт себя как Collatz-like ряд, описанный выше.

Машина работает десятки миллионов шагов, потому что для каждого добавления пяти единиц за одну 001 указатель пробегает туда-сюда через все уже записанные ранее единицы.

Честно говоря, меня всё это повергает в восторг. Самая долгая машина Тьюринга из 5 состояний совершенно не обязана была делать что-то, имеющее короткую арифметическую интерпретацию. Более того, оказывается, теоретические границы вычислимого имеют связи с реальными математическими проблемами.

Busy Beaver для 6 состояний неизвестен. Такой "простор" позволяет создавать монстров, например, так называемого Экспоненциального Коллатца: вместо умножения становится возможным применять экспоненту на каждом шаге. Но это далеко не предел - только за этот июнь было получено 2 принципиально новых результата - числа, которые возможно записать только в стрелочной нотации. А вы жалуетесь, что GPT-5 долго релизят.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/knowledge_accumulator/297

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. Andrey, a Russian entrepreneur living in Brazil who, fearing retaliation, asked that NPR not use his last name, said Telegram has become one of the few places Russians can access independent news about the war. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform.
from ye


Telegram Knowledge Accumulator
FROM American