Telegram Group & Telegram Channel
Заблуждение о токенизации и обработке текста

Одним из наиболее распространенных и важных для понимания заблуждений является представление о том, что LLM обрабатывают текст на уровне отдельных букв или символов. Карпати объясняет, что современные языковые модели работают с токенами - фрагментами текста, которые могут представлять части слов, целые слова или даже фразы. Этот процесс токенизации создает словарь из десятков тысяч токенов. Токен при этом состоит не из букв в человеческом понимании. Токен - это набор цифр в таком виде [302, 1618, 19772] (так LLM видит слово strawberry).

Токенизация является корнем многих ограничений LLM, которые пользователи ошибочно приписывают архитектуре или алгоритмам обучения. Классический пример, который приводит Карпати - неспособность модели правильно подсчитать количество букв "r" в слове "strawberry". Поскольку слово может быть токенизировано как "st" + raw" +"berry", модель не имеет прямого доступа к отдельным символам, потому что видит его так [302, 1618, 19772]. Это объясняет, почему мощные языковые модели могут решать сложные математические задачи, но испытывают трудности с простым подсчетом символов.

В экспериментаторской есть раздел с объяснением понятия токен и калькулятор для подсчета количество токенов в тексте:
экспериментаторская.рф/tiktoken
Можете поиграться с этим на досуге.

Это серия постов с заблуждениями об ЛЛМ. Предыдущий здесь.

LawCoder



group-telegram.com/law_coder/195
Create:
Last Update:

Заблуждение о токенизации и обработке текста

Одним из наиболее распространенных и важных для понимания заблуждений является представление о том, что LLM обрабатывают текст на уровне отдельных букв или символов. Карпати объясняет, что современные языковые модели работают с токенами - фрагментами текста, которые могут представлять части слов, целые слова или даже фразы. Этот процесс токенизации создает словарь из десятков тысяч токенов. Токен при этом состоит не из букв в человеческом понимании. Токен - это набор цифр в таком виде [302, 1618, 19772] (так LLM видит слово strawberry).

Токенизация является корнем многих ограничений LLM, которые пользователи ошибочно приписывают архитектуре или алгоритмам обучения. Классический пример, который приводит Карпати - неспособность модели правильно подсчитать количество букв "r" в слове "strawberry". Поскольку слово может быть токенизировано как "st" + raw" +"berry", модель не имеет прямого доступа к отдельным символам, потому что видит его так [302, 1618, 19772]. Это объясняет, почему мощные языковые модели могут решать сложные математические задачи, но испытывают трудности с простым подсчетом символов.

В экспериментаторской есть раздел с объяснением понятия токен и калькулятор для подсчета количество токенов в тексте:
экспериментаторская.рф/tiktoken
Можете поиграться с этим на досуге.

Это серия постов с заблуждениями об ЛЛМ. Предыдущий здесь.

LawCoder

BY LawCoder


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/law_coder/195

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. Investors took profits on Friday while they could ahead of the weekend, explained Tom Essaye, founder of Sevens Report Research. Saturday and Sunday could easily bring unfortunate news on the war front—and traders would rather be able to sell any recent winnings at Friday’s earlier prices than wait for a potentially lower price at Monday’s open. DFR Lab sent the image through Microsoft Azure's Face Verification program and found that it was "highly unlikely" that the person in the second photo was the same as the first woman. The fact-checker Logically AI also found the claim to be false. The woman, Olena Kurilo, was also captured in a video after the airstrike and shown to have the injuries. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. The S&P 500 fell 1.3% to 4,204.36, and the Dow Jones Industrial Average was down 0.7% to 32,943.33. The Dow posted a fifth straight weekly loss — its longest losing streak since 2019. The Nasdaq Composite tumbled 2.2% to 12,843.81. Though all three indexes opened in the green, stocks took a turn after a new report showed U.S. consumer sentiment deteriorated more than expected in early March as consumers' inflation expectations soared to the highest since 1981.
from ye


Telegram LawCoder
FROM American