Telegram Group & Telegram Channel
Вероятность как "частота" и как "плотность (вещества?)"

Обыватели воспринимают вероятность как "частоту". Ну вроде как подбросили монетку 100 раз, если примерно 50 раз выпал орёл и 50 раз решка, то вероятность каждого исхода была 1/2.

Уже в таком простом случае большое количество логических натяжек и проблем.

Статистики бы сказали, что провели "биномиальный тест". Т.е. исходя из наблюдаемого распределения результатов вывели, задним числом, какая могла бы быть вероятность отдельно взятого исхода в одном подбрасывании. Чем длиннее последовательность бросков, тем точнее можно дать соответствующую оценку (тем меньше так называемое p-value — т.е. вероятность сделать ошибочный статистический вывод).

В более сложных статистических методах оценивается не вероятность отдельного исхода, а соответствие некоторых характеристик (например, среднего значения) частной выборки "генеральной совокупности" (т.е. всему исследуемому множеству объектов/явлений — например, всем людям).

Всё это довольно сложная машинерия, опирающаяся со стороны собственно теорвера на "законы больших чисел" и "центральные предельные теоремы", а со стороны статистики на бесчисленное количество распределений и статистических проверок.

Насколько я понимаю, статистики-прикладники (социологи и психологи, например) не разбираются в первом, а математики не особо интересуются вторым :)

Для математиков вероятность это не "частота", а скорее "плотность вещества". Честная монетка это что-то вроде "гантели": невесомая твёрдая перемычка, связывающая два шарика одинаковой массы (для удобства суммарную массу примем за 1).

Если вероятности выпадения орла и решки не равны, "гантелю" начинает перекашивать; чтобы её уравновесить надо сдвинуть точку опоры в сторону большей массы. Что соответствует вычислению "математического ожидания".

Термины типа "момент", "второй момент", "второй центральный момент" (= дисперсия/variance), похоже, напрямую заимствованы математиками из механики — там "момент инерции" (вокруг начала координат или центра масс соответственно) в точности оно вот и есть.

Теорема Штейнера о моменте инерции относительно сдвинутой оси превращается в (более простую за счёт нормализации "массы" к единице) формулу математического ожидания квадрата сдвинутой на фиксированное значение случайной величины.

После Гальтона (о котором, кстати, писали ранее: 1, 2, 3) и Пирсона, по-видимому популяризировавших в теорвере термин "момент", Колмогоров наконец провёл окончательную формализацию, закрепив понимание вероятности как меры на множестве.

Представим что у нас есть две случайных величины X и Y, как на первой картинке выше, и их совместное распределение (высота столба над "столом" показывает вероятность совместного "выпадения" X,Y в соответствующую точку пространства). Каждая при этом может быть распределена произвольно, не равномерно.

Как узнать вероятность события, например, "Y больше или равно X"? Через двойной интеграл меры ("плотности вероятности") по множеству (квадрату X,Y) в заданном регионе (Y ≥ X) :)

А как это сделать? Да очень просто. Представим, что столбики указывают на плотность материала стола (чем выше столбик, тем плотнее соответствующее место стола). Проведём диагональную линию из нижнего левого в верхний правый угол квадрата, которая разделит его на два треугольника: там где X меньше Y, и там где Y меньше X (прямая y = x, "граница множества"). Дальше вырезаем ножовкой из стола нужный нам треугольник (где Y больше X, т.е. верхний). Кидаем его на весы. Готово, показания весов и есть искомая вероятность!



group-telegram.com/metaprogramming/379
Create:
Last Update:

Вероятность как "частота" и как "плотность (вещества?)"

Обыватели воспринимают вероятность как "частоту". Ну вроде как подбросили монетку 100 раз, если примерно 50 раз выпал орёл и 50 раз решка, то вероятность каждого исхода была 1/2.

Уже в таком простом случае большое количество логических натяжек и проблем.

Статистики бы сказали, что провели "биномиальный тест". Т.е. исходя из наблюдаемого распределения результатов вывели, задним числом, какая могла бы быть вероятность отдельно взятого исхода в одном подбрасывании. Чем длиннее последовательность бросков, тем точнее можно дать соответствующую оценку (тем меньше так называемое p-value — т.е. вероятность сделать ошибочный статистический вывод).

В более сложных статистических методах оценивается не вероятность отдельного исхода, а соответствие некоторых характеристик (например, среднего значения) частной выборки "генеральной совокупности" (т.е. всему исследуемому множеству объектов/явлений — например, всем людям).

Всё это довольно сложная машинерия, опирающаяся со стороны собственно теорвера на "законы больших чисел" и "центральные предельные теоремы", а со стороны статистики на бесчисленное количество распределений и статистических проверок.

Насколько я понимаю, статистики-прикладники (социологи и психологи, например) не разбираются в первом, а математики не особо интересуются вторым :)

Для математиков вероятность это не "частота", а скорее "плотность вещества". Честная монетка это что-то вроде "гантели": невесомая твёрдая перемычка, связывающая два шарика одинаковой массы (для удобства суммарную массу примем за 1).

Если вероятности выпадения орла и решки не равны, "гантелю" начинает перекашивать; чтобы её уравновесить надо сдвинуть точку опоры в сторону большей массы. Что соответствует вычислению "математического ожидания".

Термины типа "момент", "второй момент", "второй центральный момент" (= дисперсия/variance), похоже, напрямую заимствованы математиками из механики — там "момент инерции" (вокруг начала координат или центра масс соответственно) в точности оно вот и есть.

Теорема Штейнера о моменте инерции относительно сдвинутой оси превращается в (более простую за счёт нормализации "массы" к единице) формулу математического ожидания квадрата сдвинутой на фиксированное значение случайной величины.

После Гальтона (о котором, кстати, писали ранее: 1, 2, 3) и Пирсона, по-видимому популяризировавших в теорвере термин "момент", Колмогоров наконец провёл окончательную формализацию, закрепив понимание вероятности как меры на множестве.

Представим что у нас есть две случайных величины X и Y, как на первой картинке выше, и их совместное распределение (высота столба над "столом" показывает вероятность совместного "выпадения" X,Y в соответствующую точку пространства). Каждая при этом может быть распределена произвольно, не равномерно.

Как узнать вероятность события, например, "Y больше или равно X"? Через двойной интеграл меры ("плотности вероятности") по множеству (квадрату X,Y) в заданном регионе (Y ≥ X) :)

А как это сделать? Да очень просто. Представим, что столбики указывают на плотность материала стола (чем выше столбик, тем плотнее соответствующее место стола). Проведём диагональную линию из нижнего левого в верхний правый угол квадрата, которая разделит его на два треугольника: там где X меньше Y, и там где Y меньше X (прямая y = x, "граница множества"). Дальше вырезаем ножовкой из стола нужный нам треугольник (где Y больше X, т.е. верхний). Кидаем его на весы. Готово, показания весов и есть искомая вероятность!

BY Metaprogramming


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/metaprogramming/379

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website.
from ye


Telegram Metaprogramming
FROM American