Telegram Group & Telegram Channel
tasty-visial-bci-nov-2024.png
9 MB
tasty visual bci papers which i like in november of 2024
[2/3]

MonkeySee: decoding natural images straight from primate brain activity

tl;dr: CNN decoder reconstructs what a monkey sees from its brain signals in V1, V4, and IT areas.
• neural signals from 576 electrodes in V1/V4/IT areas record monkey's response to visual stimuli
• decoder architecture is essentially U-Net with additional learned Gaussian layer mapping electrode signals to 2D space
• model trained on 22,248 images from THINGS dataset achieves high correlation with ground truth
• results show hierarchical processing: V1 better at low-level features, IT at high-level semantics
link: https://openreview.net/forum?id=OWwdlxwnFN


Precise control of neural activity using dynamically optimized electrical stimulation

tl;dr: new optimization approach for neural implants that uses temporal and spatial separation for precise control of neural activity
• the array was placed on retinal ganglion cells (RGCs).
• developed greedy algorithm that selects optimal sequence of simple stimuli.
• uses temporal dithering and spatial multiplexing to avoid nonlinear electrode interactions
• improves visual stimulus reconstruction accuracy by 40% compared to existing methods
link: https://doi.org/10.7554/eLife.83424


my thoughts
The MonkeySee decoder effectively reconstructs images by mirroring how our brain processes information, from basic features in V1 to deeper meanings in IT. While not entirely novel, their experiments are well-designed, using multiple electrodes to cover various visual areas, which is impressive.
Conversely, the electrical stimulation projects are making significant strides, employing clever timing and placement strategies to enhance stimulation. They aim to reduce nonlinear responses by adjusting the timing of stimulation. Perhaps incorporating reinforcement learning could elevate this further?



group-telegram.com/neural_cell/218
Create:
Last Update:

tasty visual bci papers which i like in november of 2024
[2/3]

MonkeySee: decoding natural images straight from primate brain activity

tl;dr: CNN decoder reconstructs what a monkey sees from its brain signals in V1, V4, and IT areas.
• neural signals from 576 electrodes in V1/V4/IT areas record monkey's response to visual stimuli
• decoder architecture is essentially U-Net with additional learned Gaussian layer mapping electrode signals to 2D space
• model trained on 22,248 images from THINGS dataset achieves high correlation with ground truth
• results show hierarchical processing: V1 better at low-level features, IT at high-level semantics
link: https://openreview.net/forum?id=OWwdlxwnFN


Precise control of neural activity using dynamically optimized electrical stimulation

tl;dr: new optimization approach for neural implants that uses temporal and spatial separation for precise control of neural activity
• the array was placed on retinal ganglion cells (RGCs).
• developed greedy algorithm that selects optimal sequence of simple stimuli.
• uses temporal dithering and spatial multiplexing to avoid nonlinear electrode interactions
• improves visual stimulus reconstruction accuracy by 40% compared to existing methods
link: https://doi.org/10.7554/eLife.83424


my thoughts
The MonkeySee decoder effectively reconstructs images by mirroring how our brain processes information, from basic features in V1 to deeper meanings in IT. While not entirely novel, their experiments are well-designed, using multiple electrodes to cover various visual areas, which is impressive.
Conversely, the electrical stimulation projects are making significant strides, employing clever timing and placement strategies to enhance stimulation. They aim to reduce nonlinear responses by adjusting the timing of stimulation. Perhaps incorporating reinforcement learning could elevate this further?

BY the last neural cell


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/neural_cell/218

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels.
from ye


Telegram the last neural cell
FROM American