Telegram Group & Telegram Channel
2024-december-transformers.png
904.2 KB
tasty ai papers | december 2024

1️⃣ Byte Latent Transformer: Patches Scale Better Than Tokens

what: train llama on raw bytes without a fixed vocabulary.
- dynamically patches bytes usign local small encoder
- main decoder process these patch in AR setting
- local deocder makes next byte prediction.
paper: https://arxiv.org/abs/2412.09871

2️⃣ Large Concept Models: Language Modeling in a Sentence Representation Space

what: work with entire sentences as "concepts" through SONAR embeddings.
- quite similar with the first paper here, but it merges tokens into high dim embeddings
- working with sentence-level embeddings directly.

paper: https://arxiv.org/abs/2412.08821

3️⃣ GenCast predicts weather and the risks of extreme conditions with state-of-the-art accuracy

what: Created a diffusion model for probabilistic weather forecasting that generates 15-day predictions with 12-hour steps
how:
- It aggregates two previous timesteps to predict the next weather state
- Instead of directly sampling weather state, it generates residuals (differences) relative to the previous state.
- Артемий в канале AI для Всех сделал ревью на русском, почитайте.

paper: https://www.nature.com/articles/s41586-024-08252-9

my thoughts:
Looks like we're finally getting closer to how humans actually process language, not just crunching tokens like robots. Whether it's patching bytes or bundling tokens into sentence embeddings, this hierarchical approach seems to be the way forward.
GenCast - is just super interesting adoption of modern AI to real problems in natural science.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/neural_cell/225
Create:
Last Update:

tasty ai papers | december 2024

1️⃣ Byte Latent Transformer: Patches Scale Better Than Tokens

what: train llama on raw bytes without a fixed vocabulary.
- dynamically patches bytes usign local small encoder
- main decoder process these patch in AR setting
- local deocder makes next byte prediction.
paper: https://arxiv.org/abs/2412.09871

2️⃣ Large Concept Models: Language Modeling in a Sentence Representation Space

what: work with entire sentences as "concepts" through SONAR embeddings.
- quite similar with the first paper here, but it merges tokens into high dim embeddings
- working with sentence-level embeddings directly.

paper: https://arxiv.org/abs/2412.08821

3️⃣ GenCast predicts weather and the risks of extreme conditions with state-of-the-art accuracy

what: Created a diffusion model for probabilistic weather forecasting that generates 15-day predictions with 12-hour steps
how:
- It aggregates two previous timesteps to predict the next weather state
- Instead of directly sampling weather state, it generates residuals (differences) relative to the previous state.
- Артемий в канале AI для Всех сделал ревью на русском, почитайте.

paper: https://www.nature.com/articles/s41586-024-08252-9

my thoughts:
Looks like we're finally getting closer to how humans actually process language, not just crunching tokens like robots. Whether it's patching bytes or bundling tokens into sentence embeddings, this hierarchical approach seems to be the way forward.
GenCast - is just super interesting adoption of modern AI to real problems in natural science.

BY the last neural cell


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/neural_cell/225

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors.
from ye


Telegram the last neural cell
FROM American