Telegram Group & Telegram Channel
Токенизация изображений: от сверток к трансформерам

Долгие годы для представления картинок в сжатом виде использовали разные вариации автоэнкодеров. Чтобы получить дискретное представление (то есть набор конкретных "символов" вместо непрерывных значений), применяли VQ-VAE — это по сути обычный авто энкодер, но с vector-quantized слоем посередине.

Но в середине прошлого года трансформеры добрались и до этой области.

Главная идея состоит в том, чтобы:
1. Заменить свертки на трансформеры
2. Убрать 2D-сетку и представлять картинку как просто последовательность токенов (без явной пространственной привязки для каждого токена)

TiTok: An Image is Worth 32 Tokens
link: https://arxiv.org/abs/2406.07550

Главная фишка — всего 32/64/128 токенов достаточно для представления целого изображения!

Как это работает:
- Энкодер и декодер — оба на основе Vision Transformer
- К патчам изображения присоединяются специальные registers токены
- Эти register токены квантуются (превращаются в вектора из словаря)
- эти токены подаются на вход декодеру вместе с [MASK] токенами

Интересно, что эта архитектура похожа на MAE (Masked Autoencoder), только с акцентом на компактное представление.

Для генерации используется maskGIT, и получаются довольно качественные изображения. При этом никакой диффузии — всё быстро и понятно.


FlexTok: гибкая длина токенов
link: https://arxiv.org/abs/2502.13967

FlexTok берет идею TiTok, но вместо работы с оригинальным изображением начинает с VAE-latents:
- Добавляет flow matching для декодера
- Использует регистры как условие для модели
- Применяет nested dropout для регистров, чтобы декодер мог работать с разным числом токенов (от 1 до 256)
- use FSQ квантизацию как COSMOS by NVIDIA


FlowMO: прямой подход
link: https://www.arxiv.org/abs/2503.11056

FlowMO - Это TiTok но с диффузией для декодера.
- Работаем напрямую с картинками
- Используем все токены для реконструкции
- тоже диффузионный декодер

Сравнение моделей
TiTok работает с исходными изображениями, не использует диффузионный декодер, применяет дистилляцию через MagViT VQVAE и стандартную квантизацию.

FlexTok работает с VAE-латентами, использует диффузионный декодер, обходится без дистилляции и применяет FSQ квантизацию с 64k векторов.

FlowMO работает с исходными изображениями, использует диффузионный декодер, обходится без дистилляции и применяет LFQ (sign) квантизацию со сложными функциями потерь.

Мои мысли о развитии этих подходов

Объединить MAE с TiTok:
- используем маскирование входного изображения, как в MAE. По идеи ддолжно ускорить работу и сделать токены ещё более информативными.

Объединить FlexTok, TiTok и MAE в один универсальный экстрактор признаков:
- Случайное маскирование для входного изображения (0, 0.25, 0.5, 0.75, 1)
- Nested dropout для латентов (как в FlexTok)
- Маскирование токенов для декодера: 0.5, 0.75, 1 как это делают уже в maskGIT
- Плюс сюда же ещё добавить REPA



group-telegram.com/neural_cell/274
Create:
Last Update:

Токенизация изображений: от сверток к трансформерам

Долгие годы для представления картинок в сжатом виде использовали разные вариации автоэнкодеров. Чтобы получить дискретное представление (то есть набор конкретных "символов" вместо непрерывных значений), применяли VQ-VAE — это по сути обычный авто энкодер, но с vector-quantized слоем посередине.

Но в середине прошлого года трансформеры добрались и до этой области.

Главная идея состоит в том, чтобы:
1. Заменить свертки на трансформеры
2. Убрать 2D-сетку и представлять картинку как просто последовательность токенов (без явной пространственной привязки для каждого токена)

TiTok: An Image is Worth 32 Tokens
link: https://arxiv.org/abs/2406.07550

Главная фишка — всего 32/64/128 токенов достаточно для представления целого изображения!

Как это работает:
- Энкодер и декодер — оба на основе Vision Transformer
- К патчам изображения присоединяются специальные registers токены
- Эти register токены квантуются (превращаются в вектора из словаря)
- эти токены подаются на вход декодеру вместе с [MASK] токенами

Интересно, что эта архитектура похожа на MAE (Masked Autoencoder), только с акцентом на компактное представление.

Для генерации используется maskGIT, и получаются довольно качественные изображения. При этом никакой диффузии — всё быстро и понятно.


FlexTok: гибкая длина токенов
link: https://arxiv.org/abs/2502.13967

FlexTok берет идею TiTok, но вместо работы с оригинальным изображением начинает с VAE-latents:
- Добавляет flow matching для декодера
- Использует регистры как условие для модели
- Применяет nested dropout для регистров, чтобы декодер мог работать с разным числом токенов (от 1 до 256)
- use FSQ квантизацию как COSMOS by NVIDIA


FlowMO: прямой подход
link: https://www.arxiv.org/abs/2503.11056

FlowMO - Это TiTok но с диффузией для декодера.
- Работаем напрямую с картинками
- Используем все токены для реконструкции
- тоже диффузионный декодер

Сравнение моделей
TiTok работает с исходными изображениями, не использует диффузионный декодер, применяет дистилляцию через MagViT VQVAE и стандартную квантизацию.

FlexTok работает с VAE-латентами, использует диффузионный декодер, обходится без дистилляции и применяет FSQ квантизацию с 64k векторов.

FlowMO работает с исходными изображениями, использует диффузионный декодер, обходится без дистилляции и применяет LFQ (sign) квантизацию со сложными функциями потерь.

Мои мысли о развитии этих подходов

Объединить MAE с TiTok:
- используем маскирование входного изображения, как в MAE. По идеи ддолжно ускорить работу и сделать токены ещё более информативными.

Объединить FlexTok, TiTok и MAE в один универсальный экстрактор признаков:
- Случайное маскирование для входного изображения (0, 0.25, 0.5, 0.75, 1)
- Nested dropout для латентов (как в FlexTok)
- Маскирование токенов для декодера: 0.5, 0.75, 1 как это делают уже в maskGIT
- Плюс сюда же ещё добавить REPA

BY the last neural cell






Share with your friend now:
group-telegram.com/neural_cell/274

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. For tech stocks, “the main thing is yields,” Essaye said.
from ye


Telegram the last neural cell
FROM American