Telegram Group & Telegram Channel
Разбираем Tech Report про OpenAI Sora

Раньше у text-to-video моделей возникала проблема с консистентностью кадров. Например, вы просите сгенерировать девушку с развивающимися волосами и, если повезет, получаете видео, где лицо плывет, волосинки телепортируются в пространстве, прическа в целом живет своей жизнью.

Вторая проблема заключалась в том, что модели могли генерировать короткие видео продолжительностью в несколько секунд и делали это в квадратном разрешении (условно 256х256).

Что предлагают ребята из OpenAI?

Видео разбиваем на патчи в пространстве-времени. Идея уходит корнями в Vision Transformer (ViT). Только здесь патчи скорее всего не просто 16x16 участки изображения, но стопки (тензоры) таких изображений для нескольких подряд идущих кадров.

Основную работу выполняет диффузионная модель, которая берет на вход случайный шум и итеративно превращает его в пространственно-временные патчи. Подробнее про диффузионные модели можете почитать здесь.

Видео в высоком разрешении весят много. Память в видеокартах ограничена. Поэтому модель использует Encoder, который сжимает видео в латентное пространство меньшей размерности, диффузия идет в нем, а дальше результат разжимается в привычные нам кадры с пикселями с помощью Decoder. Все точно также как в случае с VAE в Stable Diffusion.

Обучение идет не просто на видео, но на парах видео + текстовое описание. Причем описания апскейлятся с помощью GPT-4 по аналогии с тем, как это делалось в DALL-E 3. Вот мой пост с объяснением.

На выходе получается мощная нейросетка, которая умеет:
- генерировать видео по текстовому описанию
- дополнять видео (модель генерирует продолжение)
- превращать изображения в видео (т.к. изображение — это видео из 1 кадра)
- редактировать видео с помощью текстовых промптов. Например, изменять сеттинг (стиль)
- бесшовно склеивать видео. Вы подаете 2 ролика, а модель генерирует интерполяцию между ними

От OpenAI мало технических подробностей. Чтобы лучше понимать, как все работает, советую почитать статью Motion Diffusion Model (MDM)



group-telegram.com/savostyanov_dmitry/499
Create:
Last Update:

Разбираем Tech Report про OpenAI Sora

Раньше у text-to-video моделей возникала проблема с консистентностью кадров. Например, вы просите сгенерировать девушку с развивающимися волосами и, если повезет, получаете видео, где лицо плывет, волосинки телепортируются в пространстве, прическа в целом живет своей жизнью.

Вторая проблема заключалась в том, что модели могли генерировать короткие видео продолжительностью в несколько секунд и делали это в квадратном разрешении (условно 256х256).

Что предлагают ребята из OpenAI?

Видео разбиваем на патчи в пространстве-времени. Идея уходит корнями в Vision Transformer (ViT). Только здесь патчи скорее всего не просто 16x16 участки изображения, но стопки (тензоры) таких изображений для нескольких подряд идущих кадров.

Основную работу выполняет диффузионная модель, которая берет на вход случайный шум и итеративно превращает его в пространственно-временные патчи. Подробнее про диффузионные модели можете почитать здесь.

Видео в высоком разрешении весят много. Память в видеокартах ограничена. Поэтому модель использует Encoder, который сжимает видео в латентное пространство меньшей размерности, диффузия идет в нем, а дальше результат разжимается в привычные нам кадры с пикселями с помощью Decoder. Все точно также как в случае с VAE в Stable Diffusion.

Обучение идет не просто на видео, но на парах видео + текстовое описание. Причем описания апскейлятся с помощью GPT-4 по аналогии с тем, как это делалось в DALL-E 3. Вот мой пост с объяснением.

На выходе получается мощная нейросетка, которая умеет:
- генерировать видео по текстовому описанию
- дополнять видео (модель генерирует продолжение)
- превращать изображения в видео (т.к. изображение — это видео из 1 кадра)
- редактировать видео с помощью текстовых промптов. Например, изменять сеттинг (стиль)
- бесшовно склеивать видео. Вы подаете 2 ролика, а модель генерирует интерполяцию между ними

От OpenAI мало технических подробностей. Чтобы лучше понимать, как все работает, советую почитать статью Motion Diffusion Model (MDM)

BY Дмитрий Савостьянов Вещает




Share with your friend now:
group-telegram.com/savostyanov_dmitry/499

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities.
from ye


Telegram Дмитрий Савостьянов Вещает
FROM American