Telegram Group & Telegram Channel
Революция в анализе текста: LLM против экспертов

Недавнее исследование, проведенное Петтером Тернбергом (2024), сравнило производительность LLM с другими методами аннотации текста на примере определения политической принадлежности авторов сообщений в Twitter. Задача осложнялась тем, что требовала комплексного анализа контекста, иронии и неявных смыслов.

Результаты исследования впечатляют:

LLM превзошли все другие методы, включая экспертов-аналитиков и специализированные модели машинного обучения.

LLM показали высокую точность во всех языках и культурных контекстах, несмотря на то, что обучающие данные были в основном на английском языке и в контексте США.

Анализ ошибок показал, что LLM используют логику, более похожую на человеческую, чем традиционные модели машинного обучения. Вместо простого поиска ключевых слов, LLM способны делать выводы на основе контекста и понимать мотивы автора.

LLM: новые возможности

Снижение затрат и повышение доступности анализа текста.

Новые возможности для сравнительных исследований в разных странах и культурах.

Развитие новых методов анализа, сочетающих качественные и количественные подходы.

Однако LLM также ставят перед нами новые вызовы:

Этические и юридические вопросы, связанные с использованием данных и конфиденциальностью.

Необходимость разработки стандартов и лучших практик для обеспечения надежности, воспроизводимости и этичности исследований.

Эпистемологические вопросы, связанные с природой интерпретации и ролью LLM в научном процессе.

Будущее за LLM?

LLM обладают огромным потенциалом для преобразования социальных наук. Однако важно помнить, что LLM — это всего лишь инструменты. Чтобы использовать их потенциал в полной мере, нам необходимо разработать новые подходы к анализу текста, которые учитывают как возможности, так и ограничения этих мощных технологий.



group-telegram.com/selfmadeLibrary/756
Create:
Last Update:

Революция в анализе текста: LLM против экспертов

Недавнее исследование, проведенное Петтером Тернбергом (2024), сравнило производительность LLM с другими методами аннотации текста на примере определения политической принадлежности авторов сообщений в Twitter. Задача осложнялась тем, что требовала комплексного анализа контекста, иронии и неявных смыслов.

Результаты исследования впечатляют:

LLM превзошли все другие методы, включая экспертов-аналитиков и специализированные модели машинного обучения.

LLM показали высокую точность во всех языках и культурных контекстах, несмотря на то, что обучающие данные были в основном на английском языке и в контексте США.

Анализ ошибок показал, что LLM используют логику, более похожую на человеческую, чем традиционные модели машинного обучения. Вместо простого поиска ключевых слов, LLM способны делать выводы на основе контекста и понимать мотивы автора.

LLM: новые возможности

Снижение затрат и повышение доступности анализа текста.

Новые возможности для сравнительных исследований в разных странах и культурах.

Развитие новых методов анализа, сочетающих качественные и количественные подходы.

Однако LLM также ставят перед нами новые вызовы:

Этические и юридические вопросы, связанные с использованием данных и конфиденциальностью.

Необходимость разработки стандартов и лучших практик для обеспечения надежности, воспроизводимости и этичности исследований.

Эпистемологические вопросы, связанные с природой интерпретации и ролью LLM в научном процессе.

Будущее за LLM?

LLM обладают огромным потенциалом для преобразования социальных наук. Однако важно помнить, что LLM — это всего лишь инструменты. Чтобы использовать их потенциал в полной мере, нам необходимо разработать новые подходы к анализу текста, которые учитывают как возможности, так и ограничения этих мощных технологий.

BY какая-то библиотека


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/selfmadeLibrary/756

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." Emerson Brooking, a disinformation expert at the Atlantic Council's Digital Forensic Research Lab, said: "Back in the Wild West period of content moderation, like 2014 or 2015, maybe they could have gotten away with it, but it stands in marked contrast with how other companies run themselves today." At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised.
from ye


Telegram какая-то библиотека
FROM American