Telegram Group & Telegram Channel
Тренируем лору на персонажа для Wan 1.3b под виндой

- треним только на картинках
- в musubi tuner (с GUI)
- я тренил в 640x1024, но можно и 480x832. чем больше размер, тем больше vram
- vram от 4GB (при батче 1)
- тренировка с видео занимает намного больше vram (480x852, 85 frames, batch 1 - 17 GB). В каком разрешении треним, в таком и инференс надо делать. wan vace 1.3b натренирован в разрешении 480x832
- на 30 картинках тренил 1 час на 3090
- на 30 картинках + 14 видео тренил 15 часов (лора на действие)
- для увеличения похожести в vace подаем референсную картинку с лицом
- поддерживается t2v, vace_i2v. (хз про wan-fun, wan-phantom)
- рекомендую инференс через vace_t2v+reference, vace-i2v

Установка под виндой

conda create -n musubi
conda install python=3.10
pip install torch==2.5.1 torchvision --index-url https://download.pytorch.org/whl/cu124
pip install triton-windows
pip install sageattention==1.0.6

git clone https://github.com/Kvento/musubi-tuner-wan-gui
cd musubi-tuner-wan-gui
pip install -r requirements.txt

#создаем папку \musubi-tuner-wan-gui\models\Wan\
mkdir models
cd models
mkdir models Wan


ручками качаем модельки в папку \musubi-tuner-wan-gui\models\Wan\
1.3b: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors
vae: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensors
t5: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P/resolve/main/models_t5_umt5-xxl-enc-bf16.pth
clip: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P/blob/main/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth


Если вы под виндой - надо в коде выключить libuv и оставить видимость только одной видюхи.

- в файле wan_lora_trainer_gui.py после строк импорта в строке 9 добавить строки:
os.environ["USE_LIBUV"] = "0"  # Force-disable libuv for windows
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # id of cuda device, starting from 0


- в файле hv_train_network.py после строк импорта в строке 54 добавить те же строки, что и выше.


# Датасет
30 картинок с лицом. Большинство - лицевые портреты, несколько - в полный рост. С описанием картинок я не заморачивался, ставил везде одинаковое: "Emm4w woman". Но есть вероятность, что подробное описание будет лучше.
картинки с текстовыми описниями вида image1.jpg + image1.txt сюда:
c:\DATA\SD\musubi-tuner-wan-gui\dataset\Emm4w\images\
создаем пустую папку под кэш
c:\DATA\SD\musubi-tuner-wan-gui\dataset\Emm4w\cache\

мой toml конфиг файл с описанием датасета: https://github.com/Mozer/comfy_stuff/blob/main/musubi/dataset_emm4w.toml
положите его внутрь и потом пропишите путь до него в GUI
Внутри там же есть закомментированный пример тренировки на картинках+видео.

в dataset_emm4w.toml файле слэши надо экранировать.
Батчами тренировать быстрее чем по 1 картинке.
в dataset_emm4w.toml измените максимальный размер батча под ваш размер vram. Если будет вылетать - снизьте значение batch_size. 16 для 24 GB, 8 - 12 GB. musubi группирует картинки по размеру в батчи. Если все картинки разного размера, то и батчи будут маленькие, не будут занимать много vram.

Тренить по видео пока не будем, их надо самому порезать на короткие куски длиной до 5 секунд (я тренил лору на снимание предметов одежды).

# запуск
Запускаем GUI из под конды в командной строке:
Start_Wan_GUI.bat
(кликать мышкой на бат не стоит)

В GUI установите значение "save every N epochs" - например каждую 5-ю. Если вы посреди тренировки нажмете СТОП, то принудительного сохранения не будет, потеряете какой-то промежуточный прогресс.

После тренировки нужно сконвертировать safetensors файл в формат для comfy на третьей вкладке GUI.

лора на Эмму: https://huggingface.co/Ftfyhh/wan1.3b_EmmaW_lora
на раздевание: https://huggingface.co/Ftfyhh/wan_1.3b_lora_pnts_drop
workflow wan vace text2video + ref: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_vace_1.3b_ref_and_lora.json
видео с моими лорами (nsfw): https://www.group-telegram.com/tensor_art/616



group-telegram.com/tensorbanana/1194
Create:
Last Update:

Тренируем лору на персонажа для Wan 1.3b под виндой

- треним только на картинках
- в musubi tuner (с GUI)
- я тренил в 640x1024, но можно и 480x832. чем больше размер, тем больше vram
- vram от 4GB (при батче 1)
- тренировка с видео занимает намного больше vram (480x852, 85 frames, batch 1 - 17 GB). В каком разрешении треним, в таком и инференс надо делать. wan vace 1.3b натренирован в разрешении 480x832
- на 30 картинках тренил 1 час на 3090
- на 30 картинках + 14 видео тренил 15 часов (лора на действие)
- для увеличения похожести в vace подаем референсную картинку с лицом
- поддерживается t2v, vace_i2v. (хз про wan-fun, wan-phantom)
- рекомендую инференс через vace_t2v+reference, vace-i2v

Установка под виндой

conda create -n musubi
conda install python=3.10
pip install torch==2.5.1 torchvision --index-url https://download.pytorch.org/whl/cu124
pip install triton-windows
pip install sageattention==1.0.6

git clone https://github.com/Kvento/musubi-tuner-wan-gui
cd musubi-tuner-wan-gui
pip install -r requirements.txt

#создаем папку \musubi-tuner-wan-gui\models\Wan\
mkdir models
cd models
mkdir models Wan


ручками качаем модельки в папку \musubi-tuner-wan-gui\models\Wan\
1.3b: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors
vae: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensors
t5: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P/resolve/main/models_t5_umt5-xxl-enc-bf16.pth
clip: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P/blob/main/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth


Если вы под виндой - надо в коде выключить libuv и оставить видимость только одной видюхи.

- в файле wan_lora_trainer_gui.py после строк импорта в строке 9 добавить строки:
os.environ["USE_LIBUV"] = "0"  # Force-disable libuv for windows
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # id of cuda device, starting from 0


- в файле hv_train_network.py после строк импорта в строке 54 добавить те же строки, что и выше.


# Датасет
30 картинок с лицом. Большинство - лицевые портреты, несколько - в полный рост. С описанием картинок я не заморачивался, ставил везде одинаковое: "Emm4w woman". Но есть вероятность, что подробное описание будет лучше.
картинки с текстовыми описниями вида image1.jpg + image1.txt сюда:
c:\DATA\SD\musubi-tuner-wan-gui\dataset\Emm4w\images\
создаем пустую папку под кэш
c:\DATA\SD\musubi-tuner-wan-gui\dataset\Emm4w\cache\

мой toml конфиг файл с описанием датасета: https://github.com/Mozer/comfy_stuff/blob/main/musubi/dataset_emm4w.toml
положите его внутрь и потом пропишите путь до него в GUI
Внутри там же есть закомментированный пример тренировки на картинках+видео.

в dataset_emm4w.toml файле слэши надо экранировать.
Батчами тренировать быстрее чем по 1 картинке.
в dataset_emm4w.toml измените максимальный размер батча под ваш размер vram. Если будет вылетать - снизьте значение batch_size. 16 для 24 GB, 8 - 12 GB. musubi группирует картинки по размеру в батчи. Если все картинки разного размера, то и батчи будут маленькие, не будут занимать много vram.

Тренить по видео пока не будем, их надо самому порезать на короткие куски длиной до 5 секунд (я тренил лору на снимание предметов одежды).

# запуск
Запускаем GUI из под конды в командной строке:
Start_Wan_GUI.bat
(кликать мышкой на бат не стоит)

В GUI установите значение "save every N epochs" - например каждую 5-ю. Если вы посреди тренировки нажмете СТОП, то принудительного сохранения не будет, потеряете какой-то промежуточный прогресс.

После тренировки нужно сконвертировать safetensors файл в формат для comfy на третьей вкладке GUI.

лора на Эмму: https://huggingface.co/Ftfyhh/wan1.3b_EmmaW_lora
на раздевание: https://huggingface.co/Ftfyhh/wan_1.3b_lora_pnts_drop
workflow wan vace text2video + ref: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_vace_1.3b_ref_and_lora.json
видео с моими лорами (nsfw): https://www.group-telegram.com/tensor_art/616

BY Tensor Banana






Share with your friend now:
group-telegram.com/tensorbanana/1194

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. False news often spreads via public groups, or chats, with potentially fatal effects. NEWS
from ye


Telegram Tensor Banana
FROM American