Telegram Group & Telegram Channel
Тренируем лору на персонажа для Wan 1.3b под виндой

- треним только на картинках
- в musubi tuner (с GUI)
- я тренил в 640x1024, но можно и 480x832. чем больше размер, тем больше vram
- vram от 4GB (при батче 1)
- тренировка с видео занимает намного больше vram (480x852, 85 frames, batch 1 - 17 GB). В каком разрешении треним, в таком и инференс надо делать. wan vace 1.3b натренирован в разрешении 480x832
- на 30 картинках тренил 1 час на 3090
- на 30 картинках + 14 видео тренил 15 часов (лора на действие)
- для увеличения похожести в vace подаем референсную картинку с лицом
- поддерживается t2v, vace_i2v. (хз про wan-fun, wan-phantom)
- рекомендую инференс через vace_t2v+reference, vace-i2v

Установка под виндой

conda create -n musubi
conda install python=3.10
pip install torch==2.5.1 torchvision --index-url https://download.pytorch.org/whl/cu124
pip install triton-windows
pip install sageattention==1.0.6

git clone https://github.com/Kvento/musubi-tuner-wan-gui
cd musubi-tuner-wan-gui
pip install -r requirements.txt

#создаем папку \musubi-tuner-wan-gui\models\Wan\
mkdir models
cd models
mkdir models Wan


ручками качаем модельки в папку \musubi-tuner-wan-gui\models\Wan\
1.3b: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors
vae: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensors
t5: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P/resolve/main/models_t5_umt5-xxl-enc-bf16.pth
clip: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P/blob/main/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth


Если вы под виндой - надо в коде выключить libuv и оставить видимость только одной видюхи.

- в файле wan_lora_trainer_gui.py после строк импорта в строке 9 добавить строки:
os.environ["USE_LIBUV"] = "0"  # Force-disable libuv for windows
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # id of cuda device, starting from 0


- в файле hv_train_network.py после строк импорта в строке 54 добавить те же строки, что и выше.


# Датасет
30 картинок с лицом. Большинство - лицевые портреты, несколько - в полный рост. С описанием картинок я не заморачивался, ставил везде одинаковое: "Emm4w woman". Но есть вероятность, что подробное описание будет лучше.
картинки с текстовыми описниями вида image1.jpg + image1.txt сюда:
c:\DATA\SD\musubi-tuner-wan-gui\dataset\Emm4w\images\
создаем пустую папку под кэш
c:\DATA\SD\musubi-tuner-wan-gui\dataset\Emm4w\cache\

мой toml конфиг файл с описанием датасета: https://github.com/Mozer/comfy_stuff/blob/main/musubi/dataset_emm4w.toml
положите его внутрь и потом пропишите путь до него в GUI
Внутри там же есть закомментированный пример тренировки на картинках+видео.

в dataset_emm4w.toml файле слэши надо экранировать.
Батчами тренировать быстрее чем по 1 картинке.
в dataset_emm4w.toml измените максимальный размер батча под ваш размер vram. Если будет вылетать - снизьте значение batch_size. 16 для 24 GB, 8 - 12 GB. musubi группирует картинки по размеру в батчи. Если все картинки разного размера, то и батчи будут маленькие, не будут занимать много vram.

Тренить по видео пока не будем, их надо самому порезать на короткие куски длиной до 5 секунд (я тренил лору на снимание предметов одежды).

# запуск
Запускаем GUI из под конды в командной строке:
Start_Wan_GUI.bat
(кликать мышкой на бат не стоит)

В GUI установите значение "save every N epochs" - например каждую 5-ю. Если вы посреди тренировки нажмете СТОП, то принудительного сохранения не будет, потеряете какой-то промежуточный прогресс.

После тренировки нужно сконвертировать safetensors файл в формат для comfy на третьей вкладке GUI.

лора на Эмму: https://huggingface.co/Ftfyhh/wan1.3b_EmmaW_lora
на раздевание: https://huggingface.co/Ftfyhh/wan_1.3b_lora_pnts_drop
workflow wan vace text2video + ref: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_vace_1.3b_ref_and_lora.json
видео с моими лорами (nsfw): https://www.group-telegram.com/tensor_art/616



group-telegram.com/tensorbanana/1199
Create:
Last Update:

Тренируем лору на персонажа для Wan 1.3b под виндой

- треним только на картинках
- в musubi tuner (с GUI)
- я тренил в 640x1024, но можно и 480x832. чем больше размер, тем больше vram
- vram от 4GB (при батче 1)
- тренировка с видео занимает намного больше vram (480x852, 85 frames, batch 1 - 17 GB). В каком разрешении треним, в таком и инференс надо делать. wan vace 1.3b натренирован в разрешении 480x832
- на 30 картинках тренил 1 час на 3090
- на 30 картинках + 14 видео тренил 15 часов (лора на действие)
- для увеличения похожести в vace подаем референсную картинку с лицом
- поддерживается t2v, vace_i2v. (хз про wan-fun, wan-phantom)
- рекомендую инференс через vace_t2v+reference, vace-i2v

Установка под виндой

conda create -n musubi
conda install python=3.10
pip install torch==2.5.1 torchvision --index-url https://download.pytorch.org/whl/cu124
pip install triton-windows
pip install sageattention==1.0.6

git clone https://github.com/Kvento/musubi-tuner-wan-gui
cd musubi-tuner-wan-gui
pip install -r requirements.txt

#создаем папку \musubi-tuner-wan-gui\models\Wan\
mkdir models
cd models
mkdir models Wan


ручками качаем модельки в папку \musubi-tuner-wan-gui\models\Wan\
1.3b: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors
vae: https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensors
t5: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P/resolve/main/models_t5_umt5-xxl-enc-bf16.pth
clip: https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P/blob/main/models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth


Если вы под виндой - надо в коде выключить libuv и оставить видимость только одной видюхи.

- в файле wan_lora_trainer_gui.py после строк импорта в строке 9 добавить строки:
os.environ["USE_LIBUV"] = "0"  # Force-disable libuv for windows
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # id of cuda device, starting from 0


- в файле hv_train_network.py после строк импорта в строке 54 добавить те же строки, что и выше.


# Датасет
30 картинок с лицом. Большинство - лицевые портреты, несколько - в полный рост. С описанием картинок я не заморачивался, ставил везде одинаковое: "Emm4w woman". Но есть вероятность, что подробное описание будет лучше.
картинки с текстовыми описниями вида image1.jpg + image1.txt сюда:
c:\DATA\SD\musubi-tuner-wan-gui\dataset\Emm4w\images\
создаем пустую папку под кэш
c:\DATA\SD\musubi-tuner-wan-gui\dataset\Emm4w\cache\

мой toml конфиг файл с описанием датасета: https://github.com/Mozer/comfy_stuff/blob/main/musubi/dataset_emm4w.toml
положите его внутрь и потом пропишите путь до него в GUI
Внутри там же есть закомментированный пример тренировки на картинках+видео.

в dataset_emm4w.toml файле слэши надо экранировать.
Батчами тренировать быстрее чем по 1 картинке.
в dataset_emm4w.toml измените максимальный размер батча под ваш размер vram. Если будет вылетать - снизьте значение batch_size. 16 для 24 GB, 8 - 12 GB. musubi группирует картинки по размеру в батчи. Если все картинки разного размера, то и батчи будут маленькие, не будут занимать много vram.

Тренить по видео пока не будем, их надо самому порезать на короткие куски длиной до 5 секунд (я тренил лору на снимание предметов одежды).

# запуск
Запускаем GUI из под конды в командной строке:
Start_Wan_GUI.bat
(кликать мышкой на бат не стоит)

В GUI установите значение "save every N epochs" - например каждую 5-ю. Если вы посреди тренировки нажмете СТОП, то принудительного сохранения не будет, потеряете какой-то промежуточный прогресс.

После тренировки нужно сконвертировать safetensors файл в формат для comfy на третьей вкладке GUI.

лора на Эмму: https://huggingface.co/Ftfyhh/wan1.3b_EmmaW_lora
на раздевание: https://huggingface.co/Ftfyhh/wan_1.3b_lora_pnts_drop
workflow wan vace text2video + ref: https://github.com/Mozer/comfy_stuff/blob/main/workflows/wan_vace_1.3b_ref_and_lora.json
видео с моими лорами (nsfw): https://www.group-telegram.com/tensor_art/616

BY Tensor Banana






Share with your friend now:
group-telegram.com/tensorbanana/1199

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media.
from ye


Telegram Tensor Banana
FROM American