Telegram Group & Telegram Channel
πŸš€ Model Comparison for Loan Classification

4 years ago, I built and compared several classification models to predict loan applicants as Creditworthy or Non-Creditworthy. After performing data cleansing, handling missing values, and tuning parameters, I evaluated the models using precision, recall, and F1-score.

πŸ” The Random Forest Classifier stood out with an AUC of 80% and an accuracy of 79%, successfully classifying 418 loans as Creditworthy and 82 as Non-Creditworthy.

Looking back, it's been a great learning experience, and I encourage exploring different tuning parameters and cross-validation techniques to improve model performance even further.
Check out the full source code on GitHub! πŸ’»
https://medium.com/@epythonlab/best-practices-of-classification-models-towards-predicting-loan-type-c510d9b0dff6



group-telegram.com/epythonlab/1972
Create:
Last Update:

πŸš€ Model Comparison for Loan Classification

4 years ago, I built and compared several classification models to predict loan applicants as Creditworthy or Non-Creditworthy. After performing data cleansing, handling missing values, and tuning parameters, I evaluated the models using precision, recall, and F1-score.

πŸ” The Random Forest Classifier stood out with an AUC of 80% and an accuracy of 79%, successfully classifying 418 loans as Creditworthy and 82 as Non-Creditworthy.

Looking back, it's been a great learning experience, and I encourage exploring different tuning parameters and cross-validation techniques to improve model performance even further.
Check out the full source code on GitHub! πŸ’»
https://medium.com/@epythonlab/best-practices-of-classification-models-towards-predicting-loan-type-c510d9b0dff6

BY Epython Lab




Share with your friend now:
group-telegram.com/epythonlab/1972

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. Crude oil prices edged higher after tumbling on Thursday, when U.S. West Texas intermediate slid back below $110 per barrel after topping as much as $130 a barrel in recent sessions. Still, gas prices at the pump rose to fresh highs. The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Such instructions could actually endanger people β€” citizens receive air strike warnings via smartphone alerts.
from br


Telegram Epython Lab
FROM American