Telegram Group & Telegram Channel
🧠 Байесовская очистка данных от дневного bias с помощью нелинейной регрессии

Снова измерения температуры 📈 — и снова проблема: каждый день датчик даёт случайное смещение (bias). Нам нужно не просто его найти, а сделать это более надёжно — с учётом неопределённости.

🔁 Уточнённые цели

1. Оценить дневной bias через байесовскую регрессию
2. Использовать нелинейный тренд вместо скользящего среднего
3. Построить интервалы доверия для оценённой температуры
4. Визуализировать, насколько хорошо работает очистка

📦 Шаг 1. Генерация данных (как раньше)


import pandas as pd
import numpy as np

np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))

df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)

📐 Шаг 2. Построим нелинейную модель тренда (например, полиномиальную регрессию)


from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

# Модель полиномиальной регрессии степени 6
X_time = np.arange(len(df)).reshape(-1, 1)
y = df["measured_temp"].values

model = make_pipeline(PolynomialFeatures(degree=6), Ridge(alpha=1.0))
model.fit(X_time, y)

df["trend_poly"] = model.predict(X_time)
df["residual"] = df["measured_temp"] - df["trend_poly"]


🧮 Шаг 3. Байесовская оценка bias (через среднее и стандартную ошибку)


bias_stats = df.groupby("day")["residual"].agg(["mean", "std", "count"])
bias_stats["stderr"] = bias_stats["std"] / np.sqrt(bias_stats["count"])
df["bias_bayes"] = df["day"].map(bias_stats["mean"])
df["bias_stderr"] = df["day"].map(bias_stats["stderr"])

# Восстановим очищенную температуру
df["restored_bayes"] = df["measured_temp"] - df["bias_bayes"]


📊 Шаг 4. Оценка качества и визуализация


from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(df["true_temp"], df["restored_bayes"], squared=False)
print(f"📉 RMSE (после байесовской очистки): {rmse:.3f}")


📈 Визуализация с доверительными интервалами


import matplotlib.pyplot as plt

for day in df["day"].unique():
day_data = df[df["day"] == day]
stderr = day_data["bias_stderr"].iloc[0]

plt.fill_between(day_data.index,
day_data["restored_bayes"] - stderr,
day_data["restored_bayes"] + stderr,
alpha=0.2, label=str(day) if day == df["day"].unique()[0] else "")

plt.plot(df["true_temp"], label="True Temp", lw=1.5)
plt.plot(df["restored_bayes"], label="Restored Temp (Bayes)", lw=1)
plt.legend()
plt.title("Восстановление температуры с доверительными интервалами")
plt.xlabel("Time")
plt.ylabel("°C")
plt.grid(True)
plt.show()

Вывод

✔️ Нелинейная регрессия даёт лучшее приближение тренда, чем скользящее среднее
✔️ Байесовская оценка даёт не только среднюю оценку bias, но и доверительные интервалы
✔️ Модель учитывает неопределённость и шум — ближе к реальной инженерной задаче
✔️ RMSE почти сравнивается с дисперсией шума → bias эффективно устраняется



group-telegram.com/machinelearning_interview/1815
Create:
Last Update:

🧠 Байесовская очистка данных от дневного bias с помощью нелинейной регрессии

Снова измерения температуры 📈 — и снова проблема: каждый день датчик даёт случайное смещение (bias). Нам нужно не просто его найти, а сделать это более надёжно — с учётом неопределённости.

🔁 Уточнённые цели

1. Оценить дневной bias через байесовскую регрессию
2. Использовать нелинейный тренд вместо скользящего среднего
3. Построить интервалы доверия для оценённой температуры
4. Визуализировать, насколько хорошо работает очистка

📦 Шаг 1. Генерация данных (как раньше)


import pandas as pd
import numpy as np

np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))

df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)

📐 Шаг 2. Построим нелинейную модель тренда (например, полиномиальную регрессию)


from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

# Модель полиномиальной регрессии степени 6
X_time = np.arange(len(df)).reshape(-1, 1)
y = df["measured_temp"].values

model = make_pipeline(PolynomialFeatures(degree=6), Ridge(alpha=1.0))
model.fit(X_time, y)

df["trend_poly"] = model.predict(X_time)
df["residual"] = df["measured_temp"] - df["trend_poly"]


🧮 Шаг 3. Байесовская оценка bias (через среднее и стандартную ошибку)


bias_stats = df.groupby("day")["residual"].agg(["mean", "std", "count"])
bias_stats["stderr"] = bias_stats["std"] / np.sqrt(bias_stats["count"])
df["bias_bayes"] = df["day"].map(bias_stats["mean"])
df["bias_stderr"] = df["day"].map(bias_stats["stderr"])

# Восстановим очищенную температуру
df["restored_bayes"] = df["measured_temp"] - df["bias_bayes"]


📊 Шаг 4. Оценка качества и визуализация


from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(df["true_temp"], df["restored_bayes"], squared=False)
print(f"📉 RMSE (после байесовской очистки): {rmse:.3f}")


📈 Визуализация с доверительными интервалами


import matplotlib.pyplot as plt

for day in df["day"].unique():
day_data = df[df["day"] == day]
stderr = day_data["bias_stderr"].iloc[0]

plt.fill_between(day_data.index,
day_data["restored_bayes"] - stderr,
day_data["restored_bayes"] + stderr,
alpha=0.2, label=str(day) if day == df["day"].unique()[0] else "")

plt.plot(df["true_temp"], label="True Temp", lw=1.5)
plt.plot(df["restored_bayes"], label="Restored Temp (Bayes)", lw=1)
plt.legend()
plt.title("Восстановление температуры с доверительными интервалами")
plt.xlabel("Time")
plt.ylabel("°C")
plt.grid(True)
plt.show()

Вывод

✔️ Нелинейная регрессия даёт лучшее приближение тренда, чем скользящее среднее
✔️ Байесовская оценка даёт не только среднюю оценку bias, но и доверительные интервалы
✔️ Модель учитывает неопределённость и шум — ближе к реальной инженерной задаче
✔️ RMSE почти сравнивается с дисперсией шума → bias эффективно устраняется

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/machinelearning_interview/1815

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise. There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed.
from de


Telegram Machine learning Interview
FROM American