Telegram Group Search
🚨 NVIDIA показала будущее ИИ на GTC Paris

Вот 7 самых интересных анонсов 👇

1️⃣ NVL72 — система из 72 Blackwell GPU

NVIDIA Blackwell: пропускная способность — 130 ТБ/с. Заточен для масштабных AI-систем.
• Лидерство в скорости инференса
• Поддержка популярных моделей: DeepSeek-R1, Llama 3.1 405B, Llama 3.3 70B и другие
• Второе поколение Transformer Engine с поддержкой FP4
• TensorRT Model Optimizer для квантования моделей в FP4

2️⃣ Фабрики ИИ
Дженсен назвал их *"фабриками интеллекта"*. Огромные центры на Blackwell, NVLink и жидкостном охлаждении, работающие без остановки. «Мы строим сеть AI-фабрик в Европе, чтобы локальные идеи становились глобальными инновациями»*, — Дженсен Хуанг

3️⃣ Цифровые двойники
Всё, что создаётся в физическом мире, будет сперва оцифровано в виртуальный мир

4️⃣ Agentic AI — следующий важный этап
ИИ, которые наблюдают, размышляют, действуют и учатся. Постоянно обучающиеся агенты, способные переосмысливать свои решения.

5️⃣ CUDA-Q на Grace Blackwell
CUDA-Q — это open-source платформа для разработки гибридных квантовых приложений, объединяющая GPU, CPU и QPU в единую систему.
Она “qubit-agnostic” — поддерживает любые типы кубитов и QPU-архитектуры.
🔹 Гибридный код: квантовые и классические вычисления в одном потоке
🔹 До 2500× ускорение симуляций на GPU
🔹 Лучшие компиляторы и рантайм-инструменты
🔹 Интеграция с AI и HPC-воркфлоу
🔹 Поддержка всех типов QPU и кубитных технологий
🔹 Работает с реальными и симулируемыми квантовыми процессорами

6️⃣ Суверенный AI в Европе
Франция, Германия, UK, Финляндия, Италия и Испания создают свои AI-инфраструктуры в партнёрстве с NVIDIA.

7️⃣ DGX Cloud Lepton от NVIDIA + Hugging Face
Глобальный доступ к GPU в один клик. Hugging Face запускает Training Cluster as a Service — теперь обучение LLM напрямую интегрировано с Lepton.

@ai_machinelearning_big_data


#NVIDIA #GTC
✔️ Релиз Hunyuan 3D 2.1!

Первая полностью open-source, готовая к продакшену PBR 3D генеративная модель!

PBR (Physically Based Rendering) - это технология, при которой внешний вид 3D-объектов рассчитывается с учётом реальных физических законов взаимодействия света и поверхности.

Модель выдает кинематографичное качество: синтез PBR-материалов — кожа, бронза и другие поверхности выглядят фотореалистично с красивыми эффектами освещения.

Open source: доступны веса модели, код для обучения и инференса, пайплайны — всё можно доработать под себя.

Запускается даже на потребительских GPU (Модель тестировалась на GPU A100 с Python 3.10 и PyTorch 2.5.1+cu124.) — с моделью создавать 3D-контент могут не только студии, но и любые разработчики и малые команды.

Модель: https://huggingface.co/tencent/Hunyuan3D-2.1
Github: https://github.com/Tencent-Hunyuan/Hunyuan3D-2.1
Hunyuan 3D Creation Engine: https://3d.hunyuan.tencent.com

@ai_machinelearning_big_data


#Hunyuan3D #OpenSource #3DCreation #tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
✔️ Google DeepMind запустила Weather Lab с ИИ для прогнозирования циклонов.

Weather Lab - это сервис, где Google DeepMind тестирует экспериментальные модели ИИ для прогноза тропических циклонов. Инструмент генерирует 50 сценариев развития стихии за 15 дней, используя стохастические нейросети.

Традиционные физические модели часто жертвуют точностью интенсивности ради прогноза траектории, но ИИ-система DeepMind совмещает оба параметра. В тестах ее предсказания на 5 дней в среднем ближе к реальным координатам циклона на 140 км по сравнению с ведущими глобальными решениями. Также модель превосходит региональные физические аналоги в оценке силы урагана и радиуса ветров.
deepmind.google

✔️ Новый метод ICM позволяет ИИ обучаться без человеческого контроля.

Исследователи из Anthropic, Университетов Нью-Йорка и Джорджа Вашингтона разработали метод Internal Coherence Maximization (ICM), который учит языковые модели работать с задачами, опираясь на собственную логику. Модель сама проверяет, насколько ответы согласуются между собой (взаимная предсказуемость) и нет ли противоречий (логическая непротиворечивость).

На тестах (TruthfulQA, GSM8K, Alpaca) ICM показал результаты, сравнимые с обучением на человеческих оценках, а в задачах на «субъективные» критерии даже превзошел их. Например, модель без специальной тренировки определила пол автора текста с точностью 80% — выше, чем у людей. Даже при обучении чат-бота Claude 3.5 Haiku через ICM система выигрывала в 60% случаев против версии с человеческим контролем.

Однако метод не всесилен: он работает только с теми понятиями, которые модель уже «знает», и терпит неудачу с длинными текстами или задачами, требующими новых знаний.
alignment-science-blog.pages.dev

✔️ NVIDIA и Stability AI оптимизировали Stable Diffusion 3.5 с помощью TensorRT.

Совместная работа NVIDIA и Stability AI позволила ускорить генерацию в Stable Diffusion 3.5 и сократить использование видеопамяти. Модель Large, ранее требовавшая 18 ГБ VRAM, теперь работает с 11 ГБ благодаря FP8-квантованию, что делает ее доступной для большего числа GPU. На RTX 40-й серии и Blackwell-чипах FP8 и FP4 показали двукратный прирост производительности по сравнению с PyTorch.

TensorRT оптимизировал граф модели и веса под Tensor Cores, ускорив SD3.5 Large на 2,3x и Medium — на 1,7x. Разработчики также получили облегченный SDK (в 8 раз меньше) с JIT-компиляцией, позволяющий строить движки «на лету» через Windows ML. Оптимизированные версии уже доступны на Hugging Face, а в июле появится NIM-микросервис для упрощения интеграции в приложения.
blogs.nvidia.com

✔️ Google добавила новые функции Gemini AI для Workspace.

Google расширила возможности Gemini AI в Workspace, добавив функции для анализа PDF и Google-форм. Система автоматически создает краткие сводки при открытии PDF, предлагая действия «составить предложение» или «сгенерировать вопросы ». Эти подсказки появляются в боковой панели и работают на 20+ языках с 12 июня.

Для Google-форм ИИ теперь подводит итоги ответов на открытые вопросы, выделяя ключевые темы. Эта опция активируется при трех и более ответах и станет доступна с 26 июня, но пока только на английском. Еще одна новинка, которую видят пользователи с 7 июля — «помоги создать форму», позволяющая генерировать шаблоны на основе описаний и прикреплённых файлов (Docs, Sheets и т.д.).
workspaceupdates.googleblog.com

✔️ Китайские инженеры учат ИИ за границей, обходя санкции США.

Четверо китайских инженеров прилетели в Малайзию с чемоданами, набитыми жесткими дисками: 80 терабайт данных для обучения ИИ. В местном дата-центре их компания арендовала 300 серверов с чипами Nvidia, запрещенными к экспорту в Китай. Подобные схемы — ответ на давление США, ограничивающее поставки технологий.

Физическая доставка данных вместо медленной передачи через интернет, создание подставных компаний в Малайзии и переадресация оборудования через третьи страны — так китайские фирмы обходят контроль. Но санкции сжимаются: Nvidia усиливает проверки, а страны ЮВА ужесточают правила.
wsj.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Успех в IT = скорость + знания + окружение

Здесь ты найдёшь всё это — коротко, по делу и без воды.
Пока другие ищут, где “подглядеть решение”, ты уже используешь самые свежие инструменты!

Python: www.group-telegram.com/pythonl
Linux: www.group-telegram.com/linuxacademiya
Собеседования DS: www.group-telegram.com/machinelearning_interview
МЛ: www.group-telegram.com/machinelearning_ru
C++ www.group-telegram.com/cpluspluc
Docker: www.group-telegram.com/DevopsDocker
Хакинг: www.group-telegram.com/linuxkalii
Devops: www.group-telegram.com/DevOPSitsec
Data Science: www.group-telegram.com/data_analysis_ml
Javascript: www.group-telegram.com/javascriptv
C#: www.group-telegram.com/csharp_ci
Java: www.group-telegram.com/java_library
Базы данных: www.group-telegram.com/sqlhub
Python собеседования: www.group-telegram.com/python_job_interview
Мобильная разработка: www.group-telegram.com/mobdevelop
Golang: www.group-telegram.com/Golang_google
React: www.group-telegram.com/react_tg
Rust: www.group-telegram.com/rust_code
ИИ: www.group-telegram.com/vistehno
PHP: www.group-telegram.com/phpshka
Android: www.group-telegram.com/android_its
Frontend: www.group-telegram.com/front
Big Data: www.group-telegram.com/bigdatai
МАТЕМАТИКА: www.group-telegram.com/data_math
Kubernets: www.group-telegram.com/kubernetc
Разработка игр: https://www.group-telegram.com/gamedev
Haskell: www.group-telegram.com/haskell_tg
Физика: www.group-telegram.com/fizmat

💼 Папка с вакансиями: www.group-telegram.com/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: www.group-telegram.com/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: www.group-telegram.com/addlist/eEPya-HF6mkxMGIy
Папка ML: https://www.group-telegram.com/addlist/2Ls-snqEeytkMDgy
Папка FRONTEND: https://www.group-telegram.com/addlist/mzMMG3RPZhY2M2Iy

😆ИТ-Мемы: www.group-telegram.com/memes_prog
🇬🇧Английский: www.group-telegram.com/english_forprogrammers
🧠ИИ: www.group-telegram.com/vistehno

🎓954ГБ ОПЕНСОРС КУРСОВ: @courses
📕Ит-книги бесплатно: https://www.group-telegram.com/addlist/BkskQciUW_FhNjEy

Подпишись, если хочешь быть в числе тех, кого зовут в топовые проекты!
This media is not supported in your browser
VIEW IN TELEGRAM
📄 Dolphin — новая OCR модель ByteDance для понимания сложных документов в виде изображений

Dolphin — это мультимодальная модель, которая умеет разбирать сканы и фотографии документов, включая текст, таблицы, формулы и графики.

Подойдет для автоматизации чтения и структурирования PDF-файлов, отсканированных отчётов и научных статей.

Как работает модель:
1️⃣ Анализ страницы — модель определяет порядок элементов доцентов так, как читает человек
2️⃣ Разбор содержимого — параллельно обрабатываются абзацы, таблицы, формулы и другие элементы, используя специальные встроенные промпты

Архитектура:
• Визуальный энкодер — Swin Transformer
• Текстовый декодер — MBart
• Управление через промпты

📌 Возможности:
• Постраничная обработка документа
• Точечный парсинг отдельных элементов (например, таблиц)
• Высокая точность и скорость работы модели
• Открытая MIT-лицензия

Установка:
git clone https://github.com/ByteDance/Dolphin.git
cd Dolphin


Github
HF
Demo

@ai_machinelearning_big_data


#ocr #ByteDance
🌟 SEAL: Еще одна попытка создать пайплайн самообучающихся LLM.

SEAL - это методика от MiT, позволяющая LLM самостоятельно генерировать обучающие данные и настраивать параметры обучения, чтобы адаптироваться к новым задачам. Вместо традиционного файнтюна на внешних данных модель учится рефлексировать: анализировать контекст, создавать из него синтетические данные и применять их для корректировки собственных весов через механизм усиленного обучения.

SEAL, по сути, это два разделенных цикла:

🟢Внешний цикл использует RL, чтобы научить модель генерировать «самоизменения» (инструкции на естественном языке, описывающие, какие данные использовать и как настраивать параметры).

🟢Внутренний цикл реализует эти изменения: модель дообучается на сгенерированных данных, а затем тестирует результат на конкретной задаче. За коррекцию отвечает RL-алгоритм ReSTEM, который оценивает эффективность изменений и обновляет стратегию генерации инструкций. Для экономии ресурсов используются легковесные адаптеры LoRA, которые модифицируют только часть параметров модели.

Этот процесс повторяется, постепенно формируя у модели навык преобразования исходных данных в полезные обучающие сигналы.

SEAL протестили на 2 задачах: интеграции новых знаний и few-shot обучении. В первом случае модель генерирует логические следствия из текста, дообучается на них и улучшает точность ответов на вопросы без доступа к исходному тексту.

Во втором случае SEAL выбирает оптимальные аугментации данных и гиперпараметры для обучения на примерах задач ARC-AGI.

В обоих сценариях SEAL превзошел подходы с фиксированными шаблонами (ICL, TTT+Self Edit без RL и) и даже синтетическими данными от GPT-4.1.

Метод скорее академический и по большей части экспериментальный, у него есть ограничения:

🟠При последовательном применении изменений модель склонна к «катастрофическому забыванию» — потере знаний, усвоенных ранее;

🟠Сопутствующие вычислительные затраты, так как каждая итерация требует дообучения и тестирования модели.


▶️В репозитории проекта разработчики выложили код, данные и инструкции для двух направлений:

🟢Включение новых фактических знаний;

🟢Адаптация к новым задачам на основе примеров.


📌Лицензирование: MIT License.


🟡Страница проекта
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #SEAL #RL #MiT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
2025/06/16 00:32:46
Back to Top
HTML Embed Code: