Telegram Group & Telegram Channel
Rapid Response: Mitigating LLM Jailbreaks with a Few Examples
Peng et al., 2024
Препринт, код

Вышла статья от исследователей из Anthropic, MATS и NYU о том, что цензор – это круче, чем файн-тюнинг для защиты от джейлбрейков. Как мы знаем, создатели моделей вводят в LLM, как правило на стадии выравнивания (RLHF/RLAIF/DPO и так далее), ограничения, чтобы те не генерировали тексты, которые могут оказаться опасными, вредными или незаконными. Пользователи же моделей первым делом начинают эти ограничения пытаться обойти, чем владельцам сервисов могут доставлять самые разные хлопоты, включая юридические проблемы. Так появляются джейлбрейки – подходы к промптингу, позволяющие подавить склонность выровненной LLM отказываться от выполнения тех или иных запросов.

Поскольку результатом выравнивания является не какая-то интернализация принципов безопасности, а смещение распределения в сторону отказа в районе известных внешних форм опасных запросов, мы получаем неспособность модели отказываться от выполнения запроса, если он написан на редком языке, в base64 или даже просто в прошедшем времени, и каждая последующая итерация обучения должна включать в себя такие примеры, чтобы такие джейлбрейки переставали работать. В общем, признают исследователи, проблема робастности к джейлбрейкам пока фундаментально не решена, а перезапускать RLHF каждый раз, когда аноним с твиттера заставляет твою модель писать рецепт коктейля Молотова – дорого. Поэтому давайте, говорят они, придумаем подход для того, чтобы на новые методы джейлбрейка быстро реагировать?

Для этого они предлагают новый бенчмарк (горшочек, не вари!), который должен оценить способность метода адаптации к джейлбрейку учиться на малом количестве примеров этого джейлбрейка, а также оценивают на нем несколько избранных подходов.
🦄11



group-telegram.com/llmsecurity/367
Create:
Last Update:

Rapid Response: Mitigating LLM Jailbreaks with a Few Examples
Peng et al., 2024
Препринт, код

Вышла статья от исследователей из Anthropic, MATS и NYU о том, что цензор – это круче, чем файн-тюнинг для защиты от джейлбрейков. Как мы знаем, создатели моделей вводят в LLM, как правило на стадии выравнивания (RLHF/RLAIF/DPO и так далее), ограничения, чтобы те не генерировали тексты, которые могут оказаться опасными, вредными или незаконными. Пользователи же моделей первым делом начинают эти ограничения пытаться обойти, чем владельцам сервисов могут доставлять самые разные хлопоты, включая юридические проблемы. Так появляются джейлбрейки – подходы к промптингу, позволяющие подавить склонность выровненной LLM отказываться от выполнения тех или иных запросов.

Поскольку результатом выравнивания является не какая-то интернализация принципов безопасности, а смещение распределения в сторону отказа в районе известных внешних форм опасных запросов, мы получаем неспособность модели отказываться от выполнения запроса, если он написан на редком языке, в base64 или даже просто в прошедшем времени, и каждая последующая итерация обучения должна включать в себя такие примеры, чтобы такие джейлбрейки переставали работать. В общем, признают исследователи, проблема робастности к джейлбрейкам пока фундаментально не решена, а перезапускать RLHF каждый раз, когда аноним с твиттера заставляет твою модель писать рецепт коктейля Молотова – дорого. Поэтому давайте, говорят они, придумаем подход для того, чтобы на новые методы джейлбрейка быстро реагировать?

Для этого они предлагают новый бенчмарк (горшочек, не вари!), который должен оценить способность метода адаптации к джейлбрейку учиться на малом количестве примеров этого джейлбрейка, а также оценивают на нем несколько избранных подходов.

BY llm security и каланы




Share with your friend now:
group-telegram.com/llmsecurity/367

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For tech stocks, “the main thing is yields,” Essaye said. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30.
from hk


Telegram llm security и каланы
FROM American