Telegram Group & Telegram Channel
⚗️ Что такое дистилляция и как она применяется в LLM

Чем больше модель, тем сложнее ее инферить и дороже обучать. Решить проблему призвана, в том числе, дистилляция — передача знаний от тяжёлой модели («учителя») более лёгкой («ученика»). Расскажем, какие типы дистилляции существуют и как их используют.

Классический способ предложил Джеффри Хинтон в статье 2015 года. Учёный выдвигает гипотезу, что распределение классов, которые модель предлагает в качестве ответа, само по себе содержит немало знаний. Поэтому имеет смысл тренировать «ученика» не на ответах, а на распределении классов «учителя», используя Softmax с температурой. В качестве лосса использовали кросс-энтропию между двумя распределениями — ответами учителя и ученика.

Одна из первых моделей, которую дистиллировали на претрейне, — DistilBERT. Результат получился впечатляющим: language understanding удалось сохранить на 97%, а скорость по заявлению авторов выросла на 60%. Интересно, что дистиллировали веса, а в архитектуре модели изначально было вдвое меньше энкодер-блоков, чем у базовой BERT — 6 против 12. В основе обучения — перекрестная энтропия ответов «учителя» и «ученика», MLM и L cos — косинусная близость между эмбеддингами на скрытых слоях. Идеи DistilBERT позднее применяли, например, в DistilGPT.

Самый простой из современных методов — имитация модели. Его суть — добиться, чтобы небольшая модель копировала поведение крупной. Для этого «учителя» просят генерировать ответы на разные запросы, а потом на них обучают «ученика».

Маленькие модели отлично подражают большим, но не развивают собственные навыки. Поэтому «ученики» не получают новые знания, зато неплохо справляются с тем, чтобы извлекать имеющиеся. Этот метод подходит, когда нужно натренировать модель под конкретные задачи, например, для суммаризации или разметки данных.

Для дистилляции знаний в «младшую» модель можно использовать метод Chain-of-Thought Prompting. Суть: просить LLM давать не только ответ, но и описывать цепочку рассуждений, которые к нему привели. Как показывают исследования, такой подход существенно увеличивает качество ответов на некоторых датасетах.

К примеру, авторы статьи Distilling Step-by-Step! попросили «ученика» предсказывать не только ответы «учителя», но и обоснования, чередуя запросы. Так маленькая модель тренируется думать как большая LLM, а не просто копирует ответы и поведение — на некоторых датасетах этот подход даёт отличный результат.

Кроме того, можно использовать датасет, составленный по reward-модели. В этом случае «ученик» будет тренироваться не на всех ответах «учителя», а только на тех, которые reward-модель считает хорошими, что тоже может улучшить результаты.

Наконец, можно расширить датасет, на котором учится младшая модель, с помощью генерации с разными параметрами вроде температуры или seed. Набор данных по одному промту получится более разнообразным, а поведение «ученика» в теории должно больше походить на поведение «учителя».

На этом всё. Спасибо, что прочитали! Делитесь опытом и впечатлениями от поста в комментариях! А во второй части текста мы разберём другие методы дистилляции и, конечно, затронем MiniLLM. Оставайтесь на связи!

Разбор помог подготовить Сергей Воробьев

@stuffyNLP
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/stuffyNLP/3
Create:
Last Update:

⚗️ Что такое дистилляция и как она применяется в LLM

Чем больше модель, тем сложнее ее инферить и дороже обучать. Решить проблему призвана, в том числе, дистилляция — передача знаний от тяжёлой модели («учителя») более лёгкой («ученика»). Расскажем, какие типы дистилляции существуют и как их используют.

Классический способ предложил Джеффри Хинтон в статье 2015 года. Учёный выдвигает гипотезу, что распределение классов, которые модель предлагает в качестве ответа, само по себе содержит немало знаний. Поэтому имеет смысл тренировать «ученика» не на ответах, а на распределении классов «учителя», используя Softmax с температурой. В качестве лосса использовали кросс-энтропию между двумя распределениями — ответами учителя и ученика.

Одна из первых моделей, которую дистиллировали на претрейне, — DistilBERT. Результат получился впечатляющим: language understanding удалось сохранить на 97%, а скорость по заявлению авторов выросла на 60%. Интересно, что дистиллировали веса, а в архитектуре модели изначально было вдвое меньше энкодер-блоков, чем у базовой BERT — 6 против 12. В основе обучения — перекрестная энтропия ответов «учителя» и «ученика», MLM и L cos — косинусная близость между эмбеддингами на скрытых слоях. Идеи DistilBERT позднее применяли, например, в DistilGPT.

Самый простой из современных методов — имитация модели. Его суть — добиться, чтобы небольшая модель копировала поведение крупной. Для этого «учителя» просят генерировать ответы на разные запросы, а потом на них обучают «ученика».

Маленькие модели отлично подражают большим, но не развивают собственные навыки. Поэтому «ученики» не получают новые знания, зато неплохо справляются с тем, чтобы извлекать имеющиеся. Этот метод подходит, когда нужно натренировать модель под конкретные задачи, например, для суммаризации или разметки данных.

Для дистилляции знаний в «младшую» модель можно использовать метод Chain-of-Thought Prompting. Суть: просить LLM давать не только ответ, но и описывать цепочку рассуждений, которые к нему привели. Как показывают исследования, такой подход существенно увеличивает качество ответов на некоторых датасетах.

К примеру, авторы статьи Distilling Step-by-Step! попросили «ученика» предсказывать не только ответы «учителя», но и обоснования, чередуя запросы. Так маленькая модель тренируется думать как большая LLM, а не просто копирует ответы и поведение — на некоторых датасетах этот подход даёт отличный результат.

Кроме того, можно использовать датасет, составленный по reward-модели. В этом случае «ученик» будет тренироваться не на всех ответах «учителя», а только на тех, которые reward-модель считает хорошими, что тоже может улучшить результаты.

Наконец, можно расширить датасет, на котором учится младшая модель, с помощью генерации с разными параметрами вроде температуры или seed. Набор данных по одному промту получится более разнообразным, а поведение «ученика» в теории должно больше походить на поведение «учителя».

На этом всё. Спасибо, что прочитали! Делитесь опытом и впечатлениями от поста в комментариях! А во второй части текста мы разберём другие методы дистилляции и, конечно, затронем MiniLLM. Оставайтесь на связи!

Разбор помог подготовить Сергей Воробьев

@stuffyNLP

BY Душный NLP


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/stuffyNLP/3

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised.
from hk


Telegram Душный NLP
FROM American