А что делает ИИ и что способен сделать в медицине? За пределами прямо лживых пресс-релизов про "открытие нового антибиотика за полтора часа".
На данный момент с помощью ИИ выполняют 4 принципиальных типа операций: 1️⃣ Поиск молекул с заданными свойствами в базе данных уже известных химических соединений – распознавание лиц в мире молекул. К этому сводится большинство экспериментов с ИИ, подбирающим молекулы по аналогии с теми, на которых производилось их обучение. Результат выдается за открытие, но, как мы видели на примере абауцина, практическая применимость близка к нулю.
2️⃣ Синтез “новых” препаратов путем перебора различных составных частей молекул. Работа по принципу Lego-конструктора из деталей, собираемого компьютерной моделью. Поражает аудиторию (и инвесторов) получением тысяч потенциальных лекарств за считанные минуты. Но прежде чем препарат попадет на прилавок аптеки, разработчикам нужно будет доказать, что "сконструированная" молекула действительно обладает заданным механизмом действия, безопасна и "воплотима в жизнь". Молекулы надо собирать не только на экране монитора, но и на фабрике. А с этим, как правило, проблемы.
3️⃣ Прогнозирование структуры белков. В 2021 г. было объявлено, что DeepMind от Google предсказал структуру 350 тыс. белков, включая 98,5% известных белков человека. Спустя год его база насчитывала уже более 200 млн белковых структур. Это в пресс-релизе. На практике, из 20 тыс. человеческих белков только для трети по оценкам самого алгоритма, структура была определена с точностью более 90%. Учитывая, что в случае с белками "пространственная конфигурация = эффективность" расхождение оценки ИИ с реальностью означает заведомую ошибочность оценки в двух третях случаев. И самое главное, определить ошибается ли ИИ в структуре конкретного белка или нет может лишь человек в ходе громоздких опытов. DeepMind, как и любой другой ИИ, учится на данных, собранных людьми вручную, определяя неизвестные ему белки “по аналогии”. Но кристаллографические исследования, с помощью которых ученые анализируют их структуру, требуют много времени и ленег, из-за чего не так много подтвержденных данных в этой области.
4️⃣ Поиск новых мишеней. Сюда входит выявление корреляций между заболеванием и определенными генами, опухолью и мутациями в ее клетках, конкретным видом рака и экспрессирующимися на поверхности клеток белками, которые могут служить мишенью для терапии. В качестве одного из примеров можно назвать алгоритм Insilico Medicine, которому принадлежит открытие потенциальных мишеней для лечения бокового амиотрофического склероза (в т.ч. 8 ранее неизвестных генов), различных форм рака, фиброза и анемии при ХБП. С помощью их же платформы двое школьников (!) смогли обнаружить 3 гена-мишени для лечения глиобластомы, а ученые из Мюнхена идентифицировали 2 таргетных белка для лечения острого миелоидного лейкоза с помощью CAR-T терапии. До этого CAR-T не могла применяться против этой формы лейкоза, поскольку на поверхности его раковых клеток отсутствует белок CD19, который служит стандартной мишенью. ИИ смог выявить подходящие для терапии белки, характерные именно для ОМЛ, среди 25 тыс. других белков клеточной мембраны.
Теоретически (и этого все ждут и всем обещают) конечная цель ИИ в медицине - создание таких видов терапии, разработка которых оказалась не под силу людям: новых подходов, позволяющих взглянуть на лечение заболеваний под другим углом. Ближе всех к этой цели подошли модели, созданные в рамках четвертого подхода, но и они все равно повторяют стереотипные действия, которым их обучили. А значит, ИИ можно рассматривать в качестве инструмента, помогающего обрабатывать массивы данных, ждать от него “сверхчеловеческих” достижений в создании лекарств не стоит.
Сознательно не упоминаю сонм моделей по "определению ковида\инсульта\инфаркта\рака по МРТ\кардиограмме\рентгену" (их уже сотни) и так далее. Это просто средство лишить врачей денег и рабочих мест, не способное создать новой ценности кроме заработка авторам алгоритмов и их покровителей-чиновников в принципе.
А что делает ИИ и что способен сделать в медицине? За пределами прямо лживых пресс-релизов про "открытие нового антибиотика за полтора часа".
На данный момент с помощью ИИ выполняют 4 принципиальных типа операций: 1️⃣ Поиск молекул с заданными свойствами в базе данных уже известных химических соединений – распознавание лиц в мире молекул. К этому сводится большинство экспериментов с ИИ, подбирающим молекулы по аналогии с теми, на которых производилось их обучение. Результат выдается за открытие, но, как мы видели на примере абауцина, практическая применимость близка к нулю.
2️⃣ Синтез “новых” препаратов путем перебора различных составных частей молекул. Работа по принципу Lego-конструктора из деталей, собираемого компьютерной моделью. Поражает аудиторию (и инвесторов) получением тысяч потенциальных лекарств за считанные минуты. Но прежде чем препарат попадет на прилавок аптеки, разработчикам нужно будет доказать, что "сконструированная" молекула действительно обладает заданным механизмом действия, безопасна и "воплотима в жизнь". Молекулы надо собирать не только на экране монитора, но и на фабрике. А с этим, как правило, проблемы.
3️⃣ Прогнозирование структуры белков. В 2021 г. было объявлено, что DeepMind от Google предсказал структуру 350 тыс. белков, включая 98,5% известных белков человека. Спустя год его база насчитывала уже более 200 млн белковых структур. Это в пресс-релизе. На практике, из 20 тыс. человеческих белков только для трети по оценкам самого алгоритма, структура была определена с точностью более 90%. Учитывая, что в случае с белками "пространственная конфигурация = эффективность" расхождение оценки ИИ с реальностью означает заведомую ошибочность оценки в двух третях случаев. И самое главное, определить ошибается ли ИИ в структуре конкретного белка или нет может лишь человек в ходе громоздких опытов. DeepMind, как и любой другой ИИ, учится на данных, собранных людьми вручную, определяя неизвестные ему белки “по аналогии”. Но кристаллографические исследования, с помощью которых ученые анализируют их структуру, требуют много времени и ленег, из-за чего не так много подтвержденных данных в этой области.
4️⃣ Поиск новых мишеней. Сюда входит выявление корреляций между заболеванием и определенными генами, опухолью и мутациями в ее клетках, конкретным видом рака и экспрессирующимися на поверхности клеток белками, которые могут служить мишенью для терапии. В качестве одного из примеров можно назвать алгоритм Insilico Medicine, которому принадлежит открытие потенциальных мишеней для лечения бокового амиотрофического склероза (в т.ч. 8 ранее неизвестных генов), различных форм рака, фиброза и анемии при ХБП. С помощью их же платформы двое школьников (!) смогли обнаружить 3 гена-мишени для лечения глиобластомы, а ученые из Мюнхена идентифицировали 2 таргетных белка для лечения острого миелоидного лейкоза с помощью CAR-T терапии. До этого CAR-T не могла применяться против этой формы лейкоза, поскольку на поверхности его раковых клеток отсутствует белок CD19, который служит стандартной мишенью. ИИ смог выявить подходящие для терапии белки, характерные именно для ОМЛ, среди 25 тыс. других белков клеточной мембраны.
Теоретически (и этого все ждут и всем обещают) конечная цель ИИ в медицине - создание таких видов терапии, разработка которых оказалась не под силу людям: новых подходов, позволяющих взглянуть на лечение заболеваний под другим углом. Ближе всех к этой цели подошли модели, созданные в рамках четвертого подхода, но и они все равно повторяют стереотипные действия, которым их обучили. А значит, ИИ можно рассматривать в качестве инструмента, помогающего обрабатывать массивы данных, ждать от него “сверхчеловеческих” достижений в создании лекарств не стоит.
Сознательно не упоминаю сонм моделей по "определению ковида\инсульта\инфаркта\рака по МРТ\кардиограмме\рентгену" (их уже сотни) и так далее. Это просто средство лишить врачей денег и рабочих мест, не способное создать новой ценности кроме заработка авторам алгоритмов и их покровителей-чиновников в принципе.
BY ВИРУСНАЯ НАГРУЗКА
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.” The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%.
from hk