Telegram Group & Telegram Channel
OneRec: Unifying Retrieve and Rank with Generative Recommender and Preference Alignment [2025]

У рекомендательных инженеров есть мечта - каким-то образом обучить одну модель, которая будет напрямую выбирать айтемы из огромной базы, без всяких multi-stage ranking костылей. Каким-то образом она должна совмещать в себе скорость методов кандидатогенерации и качество моделей ранжирования.

Одним из ответов на данный вызов называют генеративные рекомендации. Я уже писал про статью о Generative Retrieval (TIGER) от гугла. Суть этого подхода заключается в обучении семантических ID-шников для айтемов, делающих осмысленным генерацию айтема декодерным трансформером.

Здесь подход похожий, но авторы утверждают, что запустили такую систему в прод вместо всей системы ранжирования и получили профит. От TIGER система достаточно сильно отличается, давайте посмотрим внимательнее.

Начнём с того, что авторы не используют никакие RQ-VAE для генерации семантических ID. Вместо этого на датасете из эмбеддингов айтемов N раз применяют "Balanced K-means" - вариацию алгоритма, в которой форсируется одинаковый размер кластеров. После каждого из N применений из векторов вычитают центроиды - получается почти как в RQ-VAE, но по-другому.

Теперь к обучению трансформерного декодера. Собирается датасет из "хороших пользовательских сессий" - последовательностей событий просмотра видео, которые удовлетворяют пачке критериев - кол-во видео, общее кол-во секунд, кол-во положительных взаимодействий.

Каждое видео заменяется на последовательность его семантических ID + разделитель. На этих данных мы самым обычным образом обучаем декодер, максимизируя вероятность выдачи "хорошей сессии". Один внимательный инженер заметил, что это по сути одна итерация Cross Entropy Method, со всеми вытекающими - например, тут отсутствует оценка индивидуальных действий.

Но это только предобучение. После этого применяют "DPO с дополнительной reward model", но это не RLHF, а свой велосипед.

Сначала RM обучают по сессии предсказывать награду - наличие лайка или суммарный watchtime. Далее генератор просят выдать N последовательностей, которые RM ранжирует и выбирает лучшую и худшую - эти пары и будут использоваться для обучения DPO.

Получается, что авторы, лишь бы не использовать RL, игнорируют наличие у них Reward Model и используют метод, разработанный для того, чтобы не обучать Reward Model. Как опытный RL-щик, одобряю.

Онлайн-результаты такие: 0.1B-декодер даёт +0.57%, 1B-декодер даёт +1.21% и 1B + их DPO даёт +1.68%. Очень интересный результат, думаю, мы тоже будем копать в какую-то такую сторону. Чем меньше у системы кусков и моделей, тем лучше с практической точки зрения.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/271
Create:
Last Update:

OneRec: Unifying Retrieve and Rank with Generative Recommender and Preference Alignment [2025]

У рекомендательных инженеров есть мечта - каким-то образом обучить одну модель, которая будет напрямую выбирать айтемы из огромной базы, без всяких multi-stage ranking костылей. Каким-то образом она должна совмещать в себе скорость методов кандидатогенерации и качество моделей ранжирования.

Одним из ответов на данный вызов называют генеративные рекомендации. Я уже писал про статью о Generative Retrieval (TIGER) от гугла. Суть этого подхода заключается в обучении семантических ID-шников для айтемов, делающих осмысленным генерацию айтема декодерным трансформером.

Здесь подход похожий, но авторы утверждают, что запустили такую систему в прод вместо всей системы ранжирования и получили профит. От TIGER система достаточно сильно отличается, давайте посмотрим внимательнее.

Начнём с того, что авторы не используют никакие RQ-VAE для генерации семантических ID. Вместо этого на датасете из эмбеддингов айтемов N раз применяют "Balanced K-means" - вариацию алгоритма, в которой форсируется одинаковый размер кластеров. После каждого из N применений из векторов вычитают центроиды - получается почти как в RQ-VAE, но по-другому.

Теперь к обучению трансформерного декодера. Собирается датасет из "хороших пользовательских сессий" - последовательностей событий просмотра видео, которые удовлетворяют пачке критериев - кол-во видео, общее кол-во секунд, кол-во положительных взаимодействий.

Каждое видео заменяется на последовательность его семантических ID + разделитель. На этих данных мы самым обычным образом обучаем декодер, максимизируя вероятность выдачи "хорошей сессии". Один внимательный инженер заметил, что это по сути одна итерация Cross Entropy Method, со всеми вытекающими - например, тут отсутствует оценка индивидуальных действий.

Но это только предобучение. После этого применяют "DPO с дополнительной reward model", но это не RLHF, а свой велосипед.

Сначала RM обучают по сессии предсказывать награду - наличие лайка или суммарный watchtime. Далее генератор просят выдать N последовательностей, которые RM ранжирует и выбирает лучшую и худшую - эти пары и будут использоваться для обучения DPO.

Получается, что авторы, лишь бы не использовать RL, игнорируют наличие у них Reward Model и используют метод, разработанный для того, чтобы не обучать Reward Model. Как опытный RL-щик, одобряю.

Онлайн-результаты такие: 0.1B-декодер даёт +0.57%, 1B-декодер даёт +1.21% и 1B + их DPO даёт +1.68%. Очень интересный результат, думаю, мы тоже будем копать в какую-то такую сторону. Чем меньше у системы кусков и моделей, тем лучше с практической точки зрения.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
group-telegram.com/knowledge_accumulator/271

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said.
from in


Telegram Knowledge Accumulator
FROM American