Telegram Group & Telegram Channel
Demonstrating specification gaming in reasoning models
Alexander Bondarenko et al., Palisade Research, 2025
Препринт, код

Еще в прошлом году Palisade Research в твиттере грозились выкатить статью о том, что если предложить o1-preview сыграть в шахматы со Stockfish, она вместо игры в шахматы поломает окружение, чтобы дать себе преимущество в партии – и вот наконец статья вышла.

Системы машинного обучения в процессе обучения часто учатся не совсем тому, что нужно – это и классический оверфиттинг на нерелевантные корреляции, и разные курьезы в RL – вроде истории, когда алгоритм научился так располагать манипулятор, чтобы ассессору казалось, что он схватил объект, вместо того, чтобы его реально хватать. Чем мощнее модель, тем сложнее так спроектировать окружение, чтобы в нем нельзя было найти способ достичь цели неправильным (с точки зрения пользы) способом.

Исследователи собирают ReAct-агента с компонентами памяти, планирования и выделения подцелей. Агент получает доступ к консоли и файловой системе. Ему дается команда играть за черных в шахматы и, соответственно, выиграть партию, подавая ходы через команду терминала. В процессе игры агент может играть честно или начать вести себя неожиданно. Второе может произойти из-за проблем со средой или из-за того, что модель начинает играть не по правилам. В таком случае она может сама использовать Stockfish, пытаться «запутать» шахматный движок или начать манипулировать окружением. Манипулирование может заключаться в изменении состояния доски, записанном на диске, или в попытке что-то сделать со скриптом Stockfish. Что именно произошло оценивалось с помощью LLM-оценщика.

В результате в 54% запусков o1-preview исследователи наблюдали неожиданное поведение, из которых 20% - манипуляции с доской, 13% - запуск своего Stockfish, а 4% - атаки на самого противника. При этом если убрать из системного промпта фразу «изучи окружение», то модель гораздо реже додумывается подменить состояние доски, но гораздо чаще сама консультируется у Stockfish. Другие модели (Claude Sonnet 3.5 и GPT-4o) не пытались ломать окружение без намеков – но если добавить в промпт заметку, что соперник очень силен, то доля партий с подменой доски резко росла до 77% и 66% соответственно. Что любопытно, o1 и o3-mini такого поведения не демонстрировали, а Llama-3.1-405B и QwQ-32B-Preview до него просто не доросли. Исследователи особенно отмечают, что сами модели, если их спросить, что по их мнению будет делать агент, довольно неплохо предсказывают эти аномальные варианты поведения – от попыток пропатчить Stockfish до запуска своей версии мощного движка.

Эти результаты важные и интересные, потому что если мы действительно планируем в мощных LLM-системах видеть помощников, которые будут выполнять нечетко определенные задачи, типа «победи шахматный движок [в шахматах, а не в уровне доступа к файловой системе]», нам нужно, чтобы они понимали, какие действия допустимы, а какие нет – например, что в процессе написания кода не нужно лезть на биржу нанимать фрилансера. Иначе может получиться, что робот-шахматист, которому дали не тот промпт, может начать ломать детям пальцы вполне целенаправленно 😈
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/llmsecurity/505
Create:
Last Update:

Demonstrating specification gaming in reasoning models
Alexander Bondarenko et al., Palisade Research, 2025
Препринт, код

Еще в прошлом году Palisade Research в твиттере грозились выкатить статью о том, что если предложить o1-preview сыграть в шахматы со Stockfish, она вместо игры в шахматы поломает окружение, чтобы дать себе преимущество в партии – и вот наконец статья вышла.

Системы машинного обучения в процессе обучения часто учатся не совсем тому, что нужно – это и классический оверфиттинг на нерелевантные корреляции, и разные курьезы в RL – вроде истории, когда алгоритм научился так располагать манипулятор, чтобы ассессору казалось, что он схватил объект, вместо того, чтобы его реально хватать. Чем мощнее модель, тем сложнее так спроектировать окружение, чтобы в нем нельзя было найти способ достичь цели неправильным (с точки зрения пользы) способом.

Исследователи собирают ReAct-агента с компонентами памяти, планирования и выделения подцелей. Агент получает доступ к консоли и файловой системе. Ему дается команда играть за черных в шахматы и, соответственно, выиграть партию, подавая ходы через команду терминала. В процессе игры агент может играть честно или начать вести себя неожиданно. Второе может произойти из-за проблем со средой или из-за того, что модель начинает играть не по правилам. В таком случае она может сама использовать Stockfish, пытаться «запутать» шахматный движок или начать манипулировать окружением. Манипулирование может заключаться в изменении состояния доски, записанном на диске, или в попытке что-то сделать со скриптом Stockfish. Что именно произошло оценивалось с помощью LLM-оценщика.

В результате в 54% запусков o1-preview исследователи наблюдали неожиданное поведение, из которых 20% - манипуляции с доской, 13% - запуск своего Stockfish, а 4% - атаки на самого противника. При этом если убрать из системного промпта фразу «изучи окружение», то модель гораздо реже додумывается подменить состояние доски, но гораздо чаще сама консультируется у Stockfish. Другие модели (Claude Sonnet 3.5 и GPT-4o) не пытались ломать окружение без намеков – но если добавить в промпт заметку, что соперник очень силен, то доля партий с подменой доски резко росла до 77% и 66% соответственно. Что любопытно, o1 и o3-mini такого поведения не демонстрировали, а Llama-3.1-405B и QwQ-32B-Preview до него просто не доросли. Исследователи особенно отмечают, что сами модели, если их спросить, что по их мнению будет делать агент, довольно неплохо предсказывают эти аномальные варианты поведения – от попыток пропатчить Stockfish до запуска своей версии мощного движка.

Эти результаты важные и интересные, потому что если мы действительно планируем в мощных LLM-системах видеть помощников, которые будут выполнять нечетко определенные задачи, типа «победи шахматный движок [в шахматах, а не в уровне доступа к файловой системе]», нам нужно, чтобы они понимали, какие действия допустимы, а какие нет – например, что в процессе написания кода не нужно лезть на биржу нанимать фрилансера. Иначе может получиться, что робот-шахматист, которому дали не тот промпт, может начать ломать детям пальцы вполне целенаправленно 😈

BY llm security и каланы










Share with your friend now:
group-telegram.com/llmsecurity/505

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors.
from in


Telegram llm security и каланы
FROM American