Telegram Group & Telegram Channel
Посмотрела выступление Jason Wei и Hyung Won Chung (оба из OpenAI) в Стенфорде, записанное пару месяцев назад. Первая часть от Jason Wei несет в себе довольно очевидный посыл – компьют решает все и с достаточным компьютом вы можете дождаться того момента, когда у модели появятся emergent capabilities. Hyung Won Chung продолжает эту тему, но немного с другой стороны

Он говорит: да, дешевый компьют – главный тренд, который определяет развитие ресерча, но не единственный. Как только мы начинаем заниматься каким-нибудь ML, мы сразу решаем научить модель думать в соответствии в тем, как нам кажется устроены механизмы нашего собственного мышления (teach model how we think we think). При этом то, как мы сами думаем, мы тоже не до конца понимаем

В итоге такие модели со встроенным индуктивным баесом довольно хорошо себя ведут, когда компьюта у нас мало. Например, если мы фитим регрессию на паре тысяч примеров, то нам очень помогает, что мы наложили на модель какую-то ограничивающую линейную структуру – без нее она бы не выучила ничего. Проблемы начинаются, если мы хотим, чтобы какая-нибудь модель хорошо выучила кучу разных примеров, при чем желательно unsupervised, разных модальностей, с разными инструкциями и тд

Вот в таком сеттинге наложение на модель каких-то ограничений и уменьшение степеней свободы стреляет нам в ногу и становится боттлнеком. Поэтому, по мнению Hyung’а, тренд в AI – это разработка все более общих методов с все более слабыми modelling assumption. При современном дешевом компьюте, мы можем дождаться, когда такая “бесструктурная” модель сама распознает какие-то паттерны в данных, а не будет полагаться на какие-то вспомогательные эвристики, наложенные ресерчерами

Как пример Hyung рассматривает эволюцию от Трансформера к современной decoder-only архитектуре, где последняя является “упрощенной” формой исходной версии: attention block берет на себя и функции self-attention, и cross-attention; для обработки входной и выходной последовательности мы используем один набор параметров, а не отдельно энкодер и декодер; attention теперь не bidirectional, а unidirectional

Интересную мысль он еще говорит в Q&A части: он тоже повторяет мнение, что архитектура не так уж и важна, а вот настоящий боттлнек – это learning objectives. Например, в том, что в обучающих датасетах у нас есть всего один “эталонный” ответ, даже когда вопрос поставлен так широко, что можно ответить кучей разных способов. Отчасти это решается переходом от maximum likelihood estimation к RLHF и всякому RL в целом

Еще он говорит, что ресерч комьюнити тебя поощряет, когда ты что-то добавляешь к модели, а не убираешь. Но тут кажется с ним можно не согласиться, так как есть уже целый жанр папир “убираем из трансформера все” (или делаем линейным, или сильно урезаем):
- Your Transformer is Secretly Linear
- Убираем poistional encoding: The Impact of Positional Encoding on Length Generalization in Transformers
- Убираем аттеншн: Pretraining Without Attention, Mamba: Linear-Time Sequence Modeling with Selective State Spaces и прочие RWKV
- Убираем большую часть KV cache, MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding



group-telegram.com/def_model_train/1036
Create:
Last Update:

Посмотрела выступление Jason Wei и Hyung Won Chung (оба из OpenAI) в Стенфорде, записанное пару месяцев назад. Первая часть от Jason Wei несет в себе довольно очевидный посыл – компьют решает все и с достаточным компьютом вы можете дождаться того момента, когда у модели появятся emergent capabilities. Hyung Won Chung продолжает эту тему, но немного с другой стороны

Он говорит: да, дешевый компьют – главный тренд, который определяет развитие ресерча, но не единственный. Как только мы начинаем заниматься каким-нибудь ML, мы сразу решаем научить модель думать в соответствии в тем, как нам кажется устроены механизмы нашего собственного мышления (teach model how we think we think). При этом то, как мы сами думаем, мы тоже не до конца понимаем

В итоге такие модели со встроенным индуктивным баесом довольно хорошо себя ведут, когда компьюта у нас мало. Например, если мы фитим регрессию на паре тысяч примеров, то нам очень помогает, что мы наложили на модель какую-то ограничивающую линейную структуру – без нее она бы не выучила ничего. Проблемы начинаются, если мы хотим, чтобы какая-нибудь модель хорошо выучила кучу разных примеров, при чем желательно unsupervised, разных модальностей, с разными инструкциями и тд

Вот в таком сеттинге наложение на модель каких-то ограничений и уменьшение степеней свободы стреляет нам в ногу и становится боттлнеком. Поэтому, по мнению Hyung’а, тренд в AI – это разработка все более общих методов с все более слабыми modelling assumption. При современном дешевом компьюте, мы можем дождаться, когда такая “бесструктурная” модель сама распознает какие-то паттерны в данных, а не будет полагаться на какие-то вспомогательные эвристики, наложенные ресерчерами

Как пример Hyung рассматривает эволюцию от Трансформера к современной decoder-only архитектуре, где последняя является “упрощенной” формой исходной версии: attention block берет на себя и функции self-attention, и cross-attention; для обработки входной и выходной последовательности мы используем один набор параметров, а не отдельно энкодер и декодер; attention теперь не bidirectional, а unidirectional

Интересную мысль он еще говорит в Q&A части: он тоже повторяет мнение, что архитектура не так уж и важна, а вот настоящий боттлнек – это learning objectives. Например, в том, что в обучающих датасетах у нас есть всего один “эталонный” ответ, даже когда вопрос поставлен так широко, что можно ответить кучей разных способов. Отчасти это решается переходом от maximum likelihood estimation к RLHF и всякому RL в целом

Еще он говорит, что ресерч комьюнити тебя поощряет, когда ты что-то добавляешь к модели, а не убираешь. Но тут кажется с ним можно не согласиться, так как есть уже целый жанр папир “убираем из трансформера все” (или делаем линейным, или сильно урезаем):
- Your Transformer is Secretly Linear
- Убираем poistional encoding: The Impact of Positional Encoding on Length Generalization in Transformers
- Убираем аттеншн: Pretraining Without Attention, Mamba: Linear-Time Sequence Modeling with Selective State Spaces и прочие RWKV
- Убираем большую часть KV cache, MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding

BY я обучала одну модель




Share with your friend now:
group-telegram.com/def_model_train/1036

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30. In addition, Telegram now supports the use of third-party streaming tools like OBS Studio and XSplit to broadcast live video, allowing users to add overlays and multi-screen layouts for a more professional look.
from jp


Telegram я обучала одну модель
FROM American