Telegram Group & Telegram Channel
Вы ничего не знаете про AI (NLP), если не читали эти 10 статей

Выбил себе про-план в опенаи, теперь могу делать дип ресерч с кликбейтными заголовками. Потестил на NLP, звучит разумно.


1. Hochreiter & Schmidhuber (1997) – LSTM. Решает проблему исчезающего градиента в RNN, позволяя моделировать длинные зависимости. (LSTM, sequence modeling)

2. Mikolov et al. (2013) – Word2Vec. Ввел плотные векторные представления слов, заложив основу для современных эмбеддингов. (word2vec, embeddings, distributed representations)

3. Charniak (2000) – Probabilistic Parsing. Показал, что вероятностные методы улучшают синтаксический разбор текста. (probabilistic parsing, syntax, NLP pipelines)

4. Bahdanau et al. (2015) – Attention in Seq2Seq. Ввел механизм внимания, улучшив машинный перевод и работу с длинными текстами. (attention mechanism, seq2seq, neural machine translation)

5. Vaswani et al. (2017) – Transformer: Attention Is All You Need. Убрал рекуррентность, введя self-attention, сделав NLP модели быстрее и мощнее. (Transformer, self-attention, deep learning)

6. Devlin et al. (2019) – BERT. Ввел bidirectional attention и pre-training, задав стандарт NLP-моделям. (BERT, masked language modeling, transfer learning)

7. Brown et al. (2020) – GPT-3: Few-Shot Learning. Доказал, что масштабирование параметров улучшает генерацию текста без дообучения. (GPT-3, few-shot learning, autoregressive models)

8. Lewis et al. (2020) – RAG (Retrieval-Augmented Generation). Улучшил генерацию текста, добавив поиск в базе знаний. (retrieval-augmented generation, knowledge-intensive NLP)

9. Christiano et al. (2017) – RLHF (Reinforcement Learning from Human Feedback). Ввел RLHF, позволяя моделям обучаться на человеческих предпочтениях. (RLHF, reinforcement learning, AI alignment)

10. Ouyang et al. (2022) – InstructGPT (RLHF для инструкций). Сделал LLM послушными, научив следовать инструкциям через RLHF. (instruction tuning, RLHF, safe AI)

Пасхалка



group-telegram.com/savostyanov_dmitry/620
Create:
Last Update:

Вы ничего не знаете про AI (NLP), если не читали эти 10 статей

Выбил себе про-план в опенаи, теперь могу делать дип ресерч с кликбейтными заголовками. Потестил на NLP, звучит разумно.


1. Hochreiter & Schmidhuber (1997) – LSTM. Решает проблему исчезающего градиента в RNN, позволяя моделировать длинные зависимости. (LSTM, sequence modeling)

2. Mikolov et al. (2013) – Word2Vec. Ввел плотные векторные представления слов, заложив основу для современных эмбеддингов. (word2vec, embeddings, distributed representations)

3. Charniak (2000) – Probabilistic Parsing. Показал, что вероятностные методы улучшают синтаксический разбор текста. (probabilistic parsing, syntax, NLP pipelines)

4. Bahdanau et al. (2015) – Attention in Seq2Seq. Ввел механизм внимания, улучшив машинный перевод и работу с длинными текстами. (attention mechanism, seq2seq, neural machine translation)

5. Vaswani et al. (2017) – Transformer: Attention Is All You Need. Убрал рекуррентность, введя self-attention, сделав NLP модели быстрее и мощнее. (Transformer, self-attention, deep learning)

6. Devlin et al. (2019) – BERT. Ввел bidirectional attention и pre-training, задав стандарт NLP-моделям. (BERT, masked language modeling, transfer learning)

7. Brown et al. (2020) – GPT-3: Few-Shot Learning. Доказал, что масштабирование параметров улучшает генерацию текста без дообучения. (GPT-3, few-shot learning, autoregressive models)

8. Lewis et al. (2020) – RAG (Retrieval-Augmented Generation). Улучшил генерацию текста, добавив поиск в базе знаний. (retrieval-augmented generation, knowledge-intensive NLP)

9. Christiano et al. (2017) – RLHF (Reinforcement Learning from Human Feedback). Ввел RLHF, позволяя моделям обучаться на человеческих предпочтениях. (RLHF, reinforcement learning, AI alignment)

10. Ouyang et al. (2022) – InstructGPT (RLHF для инструкций). Сделал LLM послушными, научив следовать инструкциям через RLHF. (instruction tuning, RLHF, safe AI)

Пасхалка

BY Дмитрий Савостьянов Вещает


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/savostyanov_dmitry/620

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee. This provided opportunity to their linked entities to offload their shares at higher prices and make significant profits at the cost of unsuspecting retail investors. "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts.
from jp


Telegram Дмитрий Савостьянов Вещает
FROM American