Telegram Group & Telegram Channel
Евклид был неправ?

Помните школьный курс геометрии? Кроме прочего на примере геометрии начинают учить формулировке теорем и логике их доказательства, методу "от противного" и т.д.

Школьная программа наследует древнегреческому курсу, разработанному Евклидом (сохранилось множество фрагментов учебников и перекрёстных ссылок). При слове "Евклид" прилежным ученикам сразу вспоминаются формулировки "аксиом": "параллельные прямые не пересекаются", "через две точки можно провести одну-единственную прямую", и т.д.

Аксиомы вводятся вроде бы всерьёз: смотрите, мол, как из небольшого количества интуитивно принимаемых утверждений можно уже строгим логическим построением вывести множество полезных теорем.

Проблема в том, что уже в самых первых теоремах школьной геометрии аксиомы на самом деле стыдливо прячут в тёмный чулан, вещи в котором не полагается пристально перебирать.

Попробуем припомнить как доказывается первый признак равенства треугольника (треугольники равны по двум сторонам и углу между ними). Учитель заходит к семиклассникам с козырей:

– Шаг один: наложим угол одного треугольника на другой вот так (показывает руками)

Извините, а что значит "наложим"?! Это какой аксиоме Евклида соответствует? Почему при накладывании мы не можем поднять трегуольник с листа и перевернуть, положив на лист задней стороной? Это какой аксиомой запрещено? А когда мы будем доказывать, что, к примеру, параллельный перенос точек порождает равную фигуру, мы не будем ли опираться на этот же первый признак равенства треугольников? То есть сейчас мы этот признак доказываем через будущее следствие из него? И вообще, хватит руками размахивать, где строгие рассуждения от аксиом?!

Секрет в том, что в этом месте к размахиванию руками вместо доказательства прибегал и Евклид. Не было в его системе аксиом возможности доказать признаки равенства треугольников.

И только в самом конце 19-го века, в 1899 году, у современных математиков (Д. Гильберта) дошли руки перебрать чулан школьной геометрии и сформулировать систему из 21 аксиомы (позже выяснилось что одна лишняя, достаточно 20). И что бы вы думали? Первый признак равенства треугольников включен в качестве аксиомы! (В немного ослабленном виде: постулируется что у треугольников с равными сторонами и углом между ними равны оставшиеся углы).

А в школах-то и не в курсе!

#mathematics



group-telegram.com/metaprogramming/362
Create:
Last Update:

Евклид был неправ?

Помните школьный курс геометрии? Кроме прочего на примере геометрии начинают учить формулировке теорем и логике их доказательства, методу "от противного" и т.д.

Школьная программа наследует древнегреческому курсу, разработанному Евклидом (сохранилось множество фрагментов учебников и перекрёстных ссылок). При слове "Евклид" прилежным ученикам сразу вспоминаются формулировки "аксиом": "параллельные прямые не пересекаются", "через две точки можно провести одну-единственную прямую", и т.д.

Аксиомы вводятся вроде бы всерьёз: смотрите, мол, как из небольшого количества интуитивно принимаемых утверждений можно уже строгим логическим построением вывести множество полезных теорем.

Проблема в том, что уже в самых первых теоремах школьной геометрии аксиомы на самом деле стыдливо прячут в тёмный чулан, вещи в котором не полагается пристально перебирать.

Попробуем припомнить как доказывается первый признак равенства треугольника (треугольники равны по двум сторонам и углу между ними). Учитель заходит к семиклассникам с козырей:

– Шаг один: наложим угол одного треугольника на другой вот так (показывает руками)

Извините, а что значит "наложим"?! Это какой аксиоме Евклида соответствует? Почему при накладывании мы не можем поднять трегуольник с листа и перевернуть, положив на лист задней стороной? Это какой аксиомой запрещено? А когда мы будем доказывать, что, к примеру, параллельный перенос точек порождает равную фигуру, мы не будем ли опираться на этот же первый признак равенства треугольников? То есть сейчас мы этот признак доказываем через будущее следствие из него? И вообще, хватит руками размахивать, где строгие рассуждения от аксиом?!

Секрет в том, что в этом месте к размахиванию руками вместо доказательства прибегал и Евклид. Не было в его системе аксиом возможности доказать признаки равенства треугольников.

И только в самом конце 19-го века, в 1899 году, у современных математиков (Д. Гильберта) дошли руки перебрать чулан школьной геометрии и сформулировать систему из 21 аксиомы (позже выяснилось что одна лишняя, достаточно 20). И что бы вы думали? Первый признак равенства треугольников включен в качестве аксиомы! (В немного ослабленном виде: постулируется что у треугольников с равными сторонами и углом между ними равны оставшиеся углы).

А в школах-то и не в курсе!

#mathematics

BY Metaprogramming


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/metaprogramming/362

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. The regulator took order for the search and seizure operation from Judge Purushottam B Jadhav, Sebi Special Judge / Additional Sessions Judge. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital.
from us


Telegram Metaprogramming
FROM American