Telegram Group & Telegram Channel
Евклид был неправ?

Помните школьный курс геометрии? Кроме прочего на примере геометрии начинают учить формулировке теорем и логике их доказательства, методу "от противного" и т.д.

Школьная программа наследует древнегреческому курсу, разработанному Евклидом (сохранилось множество фрагментов учебников и перекрёстных ссылок). При слове "Евклид" прилежным ученикам сразу вспоминаются формулировки "аксиом": "параллельные прямые не пересекаются", "через две точки можно провести одну-единственную прямую", и т.д.

Аксиомы вводятся вроде бы всерьёз: смотрите, мол, как из небольшого количества интуитивно принимаемых утверждений можно уже строгим логическим построением вывести множество полезных теорем.

Проблема в том, что уже в самых первых теоремах школьной геометрии аксиомы на самом деле стыдливо прячут в тёмный чулан, вещи в котором не полагается пристально перебирать.

Попробуем припомнить как доказывается первый признак равенства треугольника (треугольники равны по двум сторонам и углу между ними). Учитель заходит к семиклассникам с козырей:

– Шаг один: наложим угол одного треугольника на другой вот так (показывает руками)

Извините, а что значит "наложим"?! Это какой аксиоме Евклида соответствует? Почему при накладывании мы не можем поднять трегуольник с листа и перевернуть, положив на лист задней стороной? Это какой аксиомой запрещено? А когда мы будем доказывать, что, к примеру, параллельный перенос точек порождает равную фигуру, мы не будем ли опираться на этот же первый признак равенства треугольников? То есть сейчас мы этот признак доказываем через будущее следствие из него? И вообще, хватит руками размахивать, где строгие рассуждения от аксиом?!

Секрет в том, что в этом месте к размахиванию руками вместо доказательства прибегал и Евклид. Не было в его системе аксиом возможности доказать признаки равенства треугольников.

И только в самом конце 19-го века, в 1899 году, у современных математиков (Д. Гильберта) дошли руки перебрать чулан школьной геометрии и сформулировать систему из 21 аксиомы (позже выяснилось что одна лишняя, достаточно 20). И что бы вы думали? Первый признак равенства треугольников включен в качестве аксиомы! (В немного ослабленном виде: постулируется что у треугольников с равными сторонами и углом между ними равны оставшиеся углы).

А в школах-то и не в курсе!

#mathematics



group-telegram.com/metaprogramming/362
Create:
Last Update:

Евклид был неправ?

Помните школьный курс геометрии? Кроме прочего на примере геометрии начинают учить формулировке теорем и логике их доказательства, методу "от противного" и т.д.

Школьная программа наследует древнегреческому курсу, разработанному Евклидом (сохранилось множество фрагментов учебников и перекрёстных ссылок). При слове "Евклид" прилежным ученикам сразу вспоминаются формулировки "аксиом": "параллельные прямые не пересекаются", "через две точки можно провести одну-единственную прямую", и т.д.

Аксиомы вводятся вроде бы всерьёз: смотрите, мол, как из небольшого количества интуитивно принимаемых утверждений можно уже строгим логическим построением вывести множество полезных теорем.

Проблема в том, что уже в самых первых теоремах школьной геометрии аксиомы на самом деле стыдливо прячут в тёмный чулан, вещи в котором не полагается пристально перебирать.

Попробуем припомнить как доказывается первый признак равенства треугольника (треугольники равны по двум сторонам и углу между ними). Учитель заходит к семиклассникам с козырей:

– Шаг один: наложим угол одного треугольника на другой вот так (показывает руками)

Извините, а что значит "наложим"?! Это какой аксиоме Евклида соответствует? Почему при накладывании мы не можем поднять трегуольник с листа и перевернуть, положив на лист задней стороной? Это какой аксиомой запрещено? А когда мы будем доказывать, что, к примеру, параллельный перенос точек порождает равную фигуру, мы не будем ли опираться на этот же первый признак равенства треугольников? То есть сейчас мы этот признак доказываем через будущее следствие из него? И вообще, хватит руками размахивать, где строгие рассуждения от аксиом?!

Секрет в том, что в этом месте к размахиванию руками вместо доказательства прибегал и Евклид. Не было в его системе аксиом возможности доказать признаки равенства треугольников.

И только в самом конце 19-го века, в 1899 году, у современных математиков (Д. Гильберта) дошли руки перебрать чулан школьной геометрии и сформулировать систему из 21 аксиомы (позже выяснилось что одна лишняя, достаточно 20). И что бы вы думали? Первый признак равенства треугольников включен в качестве аксиомы! (В немного ослабленном виде: постулируется что у треугольников с равными сторонами и углом между ними равны оставшиеся углы).

А в школах-то и не в курсе!

#mathematics

BY Metaprogramming


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/metaprogramming/362

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. Oleksandra Matviichuk, a Kyiv-based lawyer and head of the Center for Civil Liberties, called Durov’s position "very weak," and urged concrete improvements. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market.
from us


Telegram Metaprogramming
FROM American