А что делает ИИ и что способен сделать в медицине? За пределами прямо лживых пресс-релизов про "открытие нового антибиотика за полтора часа".
На данный момент с помощью ИИ выполняют 4 принципиальных типа операций: 1️⃣ Поиск молекул с заданными свойствами в базе данных уже известных химических соединений – распознавание лиц в мире молекул. К этому сводится большинство экспериментов с ИИ, подбирающим молекулы по аналогии с теми, на которых производилось их обучение. Результат выдается за открытие, но, как мы видели на примере абауцина, практическая применимость близка к нулю.
2️⃣ Синтез “новых” препаратов путем перебора различных составных частей молекул. Работа по принципу Lego-конструктора из деталей, собираемого компьютерной моделью. Поражает аудиторию (и инвесторов) получением тысяч потенциальных лекарств за считанные минуты. Но прежде чем препарат попадет на прилавок аптеки, разработчикам нужно будет доказать, что "сконструированная" молекула действительно обладает заданным механизмом действия, безопасна и "воплотима в жизнь". Молекулы надо собирать не только на экране монитора, но и на фабрике. А с этим, как правило, проблемы.
3️⃣ Прогнозирование структуры белков. В 2021 г. было объявлено, что DeepMind от Google предсказал структуру 350 тыс. белков, включая 98,5% известных белков человека. Спустя год его база насчитывала уже более 200 млн белковых структур. Это в пресс-релизе. На практике, из 20 тыс. человеческих белков только для трети по оценкам самого алгоритма, структура была определена с точностью более 90%. Учитывая, что в случае с белками "пространственная конфигурация = эффективность" расхождение оценки ИИ с реальностью означает заведомую ошибочность оценки в двух третях случаев. И самое главное, определить ошибается ли ИИ в структуре конкретного белка или нет может лишь человек в ходе громоздких опытов. DeepMind, как и любой другой ИИ, учится на данных, собранных людьми вручную, определяя неизвестные ему белки “по аналогии”. Но кристаллографические исследования, с помощью которых ученые анализируют их структуру, требуют много времени и ленег, из-за чего не так много подтвержденных данных в этой области.
4️⃣ Поиск новых мишеней. Сюда входит выявление корреляций между заболеванием и определенными генами, опухолью и мутациями в ее клетках, конкретным видом рака и экспрессирующимися на поверхности клеток белками, которые могут служить мишенью для терапии. В качестве одного из примеров можно назвать алгоритм Insilico Medicine, которому принадлежит открытие потенциальных мишеней для лечения бокового амиотрофического склероза (в т.ч. 8 ранее неизвестных генов), различных форм рака, фиброза и анемии при ХБП. С помощью их же платформы двое школьников (!) смогли обнаружить 3 гена-мишени для лечения глиобластомы, а ученые из Мюнхена идентифицировали 2 таргетных белка для лечения острого миелоидного лейкоза с помощью CAR-T терапии. До этого CAR-T не могла применяться против этой формы лейкоза, поскольку на поверхности его раковых клеток отсутствует белок CD19, который служит стандартной мишенью. ИИ смог выявить подходящие для терапии белки, характерные именно для ОМЛ, среди 25 тыс. других белков клеточной мембраны.
Теоретически (и этого все ждут и всем обещают) конечная цель ИИ в медицине - создание таких видов терапии, разработка которых оказалась не под силу людям: новых подходов, позволяющих взглянуть на лечение заболеваний под другим углом. Ближе всех к этой цели подошли модели, созданные в рамках четвертого подхода, но и они все равно повторяют стереотипные действия, которым их обучили. А значит, ИИ можно рассматривать в качестве инструмента, помогающего обрабатывать массивы данных, ждать от него “сверхчеловеческих” достижений в создании лекарств не стоит.
Сознательно не упоминаю сонм моделей по "определению ковида\инсульта\инфаркта\рака по МРТ\кардиограмме\рентгену" (их уже сотни) и так далее. Это просто средство лишить врачей денег и рабочих мест, не способное создать новой ценности кроме заработка авторам алгоритмов и их покровителей-чиновников в принципе.
А что делает ИИ и что способен сделать в медицине? За пределами прямо лживых пресс-релизов про "открытие нового антибиотика за полтора часа".
На данный момент с помощью ИИ выполняют 4 принципиальных типа операций: 1️⃣ Поиск молекул с заданными свойствами в базе данных уже известных химических соединений – распознавание лиц в мире молекул. К этому сводится большинство экспериментов с ИИ, подбирающим молекулы по аналогии с теми, на которых производилось их обучение. Результат выдается за открытие, но, как мы видели на примере абауцина, практическая применимость близка к нулю.
2️⃣ Синтез “новых” препаратов путем перебора различных составных частей молекул. Работа по принципу Lego-конструктора из деталей, собираемого компьютерной моделью. Поражает аудиторию (и инвесторов) получением тысяч потенциальных лекарств за считанные минуты. Но прежде чем препарат попадет на прилавок аптеки, разработчикам нужно будет доказать, что "сконструированная" молекула действительно обладает заданным механизмом действия, безопасна и "воплотима в жизнь". Молекулы надо собирать не только на экране монитора, но и на фабрике. А с этим, как правило, проблемы.
3️⃣ Прогнозирование структуры белков. В 2021 г. было объявлено, что DeepMind от Google предсказал структуру 350 тыс. белков, включая 98,5% известных белков человека. Спустя год его база насчитывала уже более 200 млн белковых структур. Это в пресс-релизе. На практике, из 20 тыс. человеческих белков только для трети по оценкам самого алгоритма, структура была определена с точностью более 90%. Учитывая, что в случае с белками "пространственная конфигурация = эффективность" расхождение оценки ИИ с реальностью означает заведомую ошибочность оценки в двух третях случаев. И самое главное, определить ошибается ли ИИ в структуре конкретного белка или нет может лишь человек в ходе громоздких опытов. DeepMind, как и любой другой ИИ, учится на данных, собранных людьми вручную, определяя неизвестные ему белки “по аналогии”. Но кристаллографические исследования, с помощью которых ученые анализируют их структуру, требуют много времени и ленег, из-за чего не так много подтвержденных данных в этой области.
4️⃣ Поиск новых мишеней. Сюда входит выявление корреляций между заболеванием и определенными генами, опухолью и мутациями в ее клетках, конкретным видом рака и экспрессирующимися на поверхности клеток белками, которые могут служить мишенью для терапии. В качестве одного из примеров можно назвать алгоритм Insilico Medicine, которому принадлежит открытие потенциальных мишеней для лечения бокового амиотрофического склероза (в т.ч. 8 ранее неизвестных генов), различных форм рака, фиброза и анемии при ХБП. С помощью их же платформы двое школьников (!) смогли обнаружить 3 гена-мишени для лечения глиобластомы, а ученые из Мюнхена идентифицировали 2 таргетных белка для лечения острого миелоидного лейкоза с помощью CAR-T терапии. До этого CAR-T не могла применяться против этой формы лейкоза, поскольку на поверхности его раковых клеток отсутствует белок CD19, который служит стандартной мишенью. ИИ смог выявить подходящие для терапии белки, характерные именно для ОМЛ, среди 25 тыс. других белков клеточной мембраны.
Теоретически (и этого все ждут и всем обещают) конечная цель ИИ в медицине - создание таких видов терапии, разработка которых оказалась не под силу людям: новых подходов, позволяющих взглянуть на лечение заболеваний под другим углом. Ближе всех к этой цели подошли модели, созданные в рамках четвертого подхода, но и они все равно повторяют стереотипные действия, которым их обучили. А значит, ИИ можно рассматривать в качестве инструмента, помогающего обрабатывать массивы данных, ждать от него “сверхчеловеческих” достижений в создании лекарств не стоит.
Сознательно не упоминаю сонм моделей по "определению ковида\инсульта\инфаркта\рака по МРТ\кардиограмме\рентгену" (их уже сотни) и так далее. Это просто средство лишить врачей денег и рабочих мест, не способное создать новой ценности кроме заработка авторам алгоритмов и их покровителей-чиновников в принципе.
BY ВИРУСНАЯ НАГРУЗКА
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. "Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels."
from ru