Telegram Group & Telegram Channel
🧠 Байесовская очистка данных от дневного bias с помощью нелинейной регрессии

Снова измерения температуры 📈 — и снова проблема: каждый день датчик даёт случайное смещение (bias). Нам нужно не просто его найти, а сделать это более надёжно — с учётом неопределённости.

🔁 Уточнённые цели

1. Оценить дневной bias через байесовскую регрессию
2. Использовать нелинейный тренд вместо скользящего среднего
3. Построить интервалы доверия для оценённой температуры
4. Визуализировать, насколько хорошо работает очистка

📦 Шаг 1. Генерация данных (как раньше)


import pandas as pd
import numpy as np

np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))

df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)

📐 Шаг 2. Построим нелинейную модель тренда (например, полиномиальную регрессию)


from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

# Модель полиномиальной регрессии степени 6
X_time = np.arange(len(df)).reshape(-1, 1)
y = df["measured_temp"].values

model = make_pipeline(PolynomialFeatures(degree=6), Ridge(alpha=1.0))
model.fit(X_time, y)

df["trend_poly"] = model.predict(X_time)
df["residual"] = df["measured_temp"] - df["trend_poly"]


🧮 Шаг 3. Байесовская оценка bias (через среднее и стандартную ошибку)


bias_stats = df.groupby("day")["residual"].agg(["mean", "std", "count"])
bias_stats["stderr"] = bias_stats["std"] / np.sqrt(bias_stats["count"])
df["bias_bayes"] = df["day"].map(bias_stats["mean"])
df["bias_stderr"] = df["day"].map(bias_stats["stderr"])

# Восстановим очищенную температуру
df["restored_bayes"] = df["measured_temp"] - df["bias_bayes"]


📊 Шаг 4. Оценка качества и визуализация


from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(df["true_temp"], df["restored_bayes"], squared=False)
print(f"📉 RMSE (после байесовской очистки): {rmse:.3f}")


📈 Визуализация с доверительными интервалами


import matplotlib.pyplot as plt

for day in df["day"].unique():
day_data = df[df["day"] == day]
stderr = day_data["bias_stderr"].iloc[0]

plt.fill_between(day_data.index,
day_data["restored_bayes"] - stderr,
day_data["restored_bayes"] + stderr,
alpha=0.2, label=str(day) if day == df["day"].unique()[0] else "")

plt.plot(df["true_temp"], label="True Temp", lw=1.5)
plt.plot(df["restored_bayes"], label="Restored Temp (Bayes)", lw=1)
plt.legend()
plt.title("Восстановление температуры с доверительными интервалами")
plt.xlabel("Time")
plt.ylabel("°C")
plt.grid(True)
plt.show()

Вывод

✔️ Нелинейная регрессия даёт лучшее приближение тренда, чем скользящее среднее
✔️ Байесовская оценка даёт не только среднюю оценку bias, но и доверительные интервалы
✔️ Модель учитывает неопределённость и шум — ближе к реальной инженерной задаче
✔️ RMSE почти сравнивается с дисперсией шума → bias эффективно устраняется
👍16🔥107😢2



group-telegram.com/machinelearning_interview/1815
Create:
Last Update:

🧠 Байесовская очистка данных от дневного bias с помощью нелинейной регрессии

Снова измерения температуры 📈 — и снова проблема: каждый день датчик даёт случайное смещение (bias). Нам нужно не просто его найти, а сделать это более надёжно — с учётом неопределённости.

🔁 Уточнённые цели

1. Оценить дневной bias через байесовскую регрессию
2. Использовать нелинейный тренд вместо скользящего среднего
3. Построить интервалы доверия для оценённой температуры
4. Визуализировать, насколько хорошо работает очистка

📦 Шаг 1. Генерация данных (как раньше)


import pandas as pd
import numpy as np

np.random.seed(42)
days = pd.date_range("2023-01-01", periods=10, freq="D")
true_temp = np.sin(np.linspace(0, 3 * np.pi, 240)) * 10 + 20
bias_per_day = np.random.uniform(-2, 2, size=len(days))

df = pd.DataFrame({
"datetime": pd.date_range("2023-01-01", periods=240, freq="H"),
})
df["day"] = df["datetime"].dt.date
df["true_temp"] = true_temp
df["bias"] = df["day"].map(dict(zip(days.date, bias_per_day)))
df["measured_temp"] = df["true_temp"] + df["bias"] + np.random.normal(0, 0.5, size=240)

📐 Шаг 2. Построим нелинейную модель тренда (например, полиномиальную регрессию)


from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import make_pipeline

# Модель полиномиальной регрессии степени 6
X_time = np.arange(len(df)).reshape(-1, 1)
y = df["measured_temp"].values

model = make_pipeline(PolynomialFeatures(degree=6), Ridge(alpha=1.0))
model.fit(X_time, y)

df["trend_poly"] = model.predict(X_time)
df["residual"] = df["measured_temp"] - df["trend_poly"]


🧮 Шаг 3. Байесовская оценка bias (через среднее и стандартную ошибку)


bias_stats = df.groupby("day")["residual"].agg(["mean", "std", "count"])
bias_stats["stderr"] = bias_stats["std"] / np.sqrt(bias_stats["count"])
df["bias_bayes"] = df["day"].map(bias_stats["mean"])
df["bias_stderr"] = df["day"].map(bias_stats["stderr"])

# Восстановим очищенную температуру
df["restored_bayes"] = df["measured_temp"] - df["bias_bayes"]


📊 Шаг 4. Оценка качества и визуализация


from sklearn.metrics import mean_squared_error
rmse = mean_squared_error(df["true_temp"], df["restored_bayes"], squared=False)
print(f"📉 RMSE (после байесовской очистки): {rmse:.3f}")


📈 Визуализация с доверительными интервалами


import matplotlib.pyplot as plt

for day in df["day"].unique():
day_data = df[df["day"] == day]
stderr = day_data["bias_stderr"].iloc[0]

plt.fill_between(day_data.index,
day_data["restored_bayes"] - stderr,
day_data["restored_bayes"] + stderr,
alpha=0.2, label=str(day) if day == df["day"].unique()[0] else "")

plt.plot(df["true_temp"], label="True Temp", lw=1.5)
plt.plot(df["restored_bayes"], label="Restored Temp (Bayes)", lw=1)
plt.legend()
plt.title("Восстановление температуры с доверительными интервалами")
plt.xlabel("Time")
plt.ylabel("°C")
plt.grid(True)
plt.show()

Вывод

✔️ Нелинейная регрессия даёт лучшее приближение тренда, чем скользящее среднее
✔️ Байесовская оценка даёт не только среднюю оценку bias, но и доверительные интервалы
✔️ Модель учитывает неопределённость и шум — ближе к реальной инженерной задаче
✔️ RMSE почти сравнивается с дисперсией шума → bias эффективно устраняется

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/machinelearning_interview/1815

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. Some privacy experts say Telegram is not secure enough READ MORE
from sa


Telegram Machine learning Interview
FROM American