Telegram Group & Telegram Channel
Посмотрела выступление Jason Wei и Hyung Won Chung (оба из OpenAI) в Стенфорде, записанное пару месяцев назад. Первая часть от Jason Wei несет в себе довольно очевидный посыл – компьют решает все и с достаточным компьютом вы можете дождаться того момента, когда у модели появятся emergent capabilities. Hyung Won Chung продолжает эту тему, но немного с другой стороны

Он говорит: да, дешевый компьют – главный тренд, который определяет развитие ресерча, но не единственный. Как только мы начинаем заниматься каким-нибудь ML, мы сразу решаем научить модель думать в соответствии в тем, как нам кажется устроены механизмы нашего собственного мышления (teach model how we think we think). При этом то, как мы сами думаем, мы тоже не до конца понимаем

В итоге такие модели со встроенным индуктивным баесом довольно хорошо себя ведут, когда компьюта у нас мало. Например, если мы фитим регрессию на паре тысяч примеров, то нам очень помогает, что мы наложили на модель какую-то ограничивающую линейную структуру – без нее она бы не выучила ничего. Проблемы начинаются, если мы хотим, чтобы какая-нибудь модель хорошо выучила кучу разных примеров, при чем желательно unsupervised, разных модальностей, с разными инструкциями и тд

Вот в таком сеттинге наложение на модель каких-то ограничений и уменьшение степеней свободы стреляет нам в ногу и становится боттлнеком. Поэтому, по мнению Hyung’а, тренд в AI – это разработка все более общих методов с все более слабыми modelling assumption. При современном дешевом компьюте, мы можем дождаться, когда такая “бесструктурная” модель сама распознает какие-то паттерны в данных, а не будет полагаться на какие-то вспомогательные эвристики, наложенные ресерчерами

Как пример Hyung рассматривает эволюцию от Трансформера к современной decoder-only архитектуре, где последняя является “упрощенной” формой исходной версии: attention block берет на себя и функции self-attention, и cross-attention; для обработки входной и выходной последовательности мы используем один набор параметров, а не отдельно энкодер и декодер; attention теперь не bidirectional, а unidirectional

Интересную мысль он еще говорит в Q&A части: он тоже повторяет мнение, что архитектура не так уж и важна, а вот настоящий боттлнек – это learning objectives. Например, в том, что в обучающих датасетах у нас есть всего один “эталонный” ответ, даже когда вопрос поставлен так широко, что можно ответить кучей разных способов. Отчасти это решается переходом от maximum likelihood estimation к RLHF и всякому RL в целом

Еще он говорит, что ресерч комьюнити тебя поощряет, когда ты что-то добавляешь к модели, а не убираешь. Но тут кажется с ним можно не согласиться, так как есть уже целый жанр папир “убираем из трансформера все” (или делаем линейным, или сильно урезаем):
- Your Transformer is Secretly Linear
- Убираем poistional encoding: The Impact of Positional Encoding on Length Generalization in Transformers
- Убираем аттеншн: Pretraining Without Attention, Mamba: Linear-Time Sequence Modeling with Selective State Spaces и прочие RWKV
- Убираем большую часть KV cache, MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding



group-telegram.com/def_model_train/1036
Create:
Last Update:

Посмотрела выступление Jason Wei и Hyung Won Chung (оба из OpenAI) в Стенфорде, записанное пару месяцев назад. Первая часть от Jason Wei несет в себе довольно очевидный посыл – компьют решает все и с достаточным компьютом вы можете дождаться того момента, когда у модели появятся emergent capabilities. Hyung Won Chung продолжает эту тему, но немного с другой стороны

Он говорит: да, дешевый компьют – главный тренд, который определяет развитие ресерча, но не единственный. Как только мы начинаем заниматься каким-нибудь ML, мы сразу решаем научить модель думать в соответствии в тем, как нам кажется устроены механизмы нашего собственного мышления (teach model how we think we think). При этом то, как мы сами думаем, мы тоже не до конца понимаем

В итоге такие модели со встроенным индуктивным баесом довольно хорошо себя ведут, когда компьюта у нас мало. Например, если мы фитим регрессию на паре тысяч примеров, то нам очень помогает, что мы наложили на модель какую-то ограничивающую линейную структуру – без нее она бы не выучила ничего. Проблемы начинаются, если мы хотим, чтобы какая-нибудь модель хорошо выучила кучу разных примеров, при чем желательно unsupervised, разных модальностей, с разными инструкциями и тд

Вот в таком сеттинге наложение на модель каких-то ограничений и уменьшение степеней свободы стреляет нам в ногу и становится боттлнеком. Поэтому, по мнению Hyung’а, тренд в AI – это разработка все более общих методов с все более слабыми modelling assumption. При современном дешевом компьюте, мы можем дождаться, когда такая “бесструктурная” модель сама распознает какие-то паттерны в данных, а не будет полагаться на какие-то вспомогательные эвристики, наложенные ресерчерами

Как пример Hyung рассматривает эволюцию от Трансформера к современной decoder-only архитектуре, где последняя является “упрощенной” формой исходной версии: attention block берет на себя и функции self-attention, и cross-attention; для обработки входной и выходной последовательности мы используем один набор параметров, а не отдельно энкодер и декодер; attention теперь не bidirectional, а unidirectional

Интересную мысль он еще говорит в Q&A части: он тоже повторяет мнение, что архитектура не так уж и важна, а вот настоящий боттлнек – это learning objectives. Например, в том, что в обучающих датасетах у нас есть всего один “эталонный” ответ, даже когда вопрос поставлен так широко, что можно ответить кучей разных способов. Отчасти это решается переходом от maximum likelihood estimation к RLHF и всякому RL в целом

Еще он говорит, что ресерч комьюнити тебя поощряет, когда ты что-то добавляешь к модели, а не убираешь. Но тут кажется с ним можно не согласиться, так как есть уже целый жанр папир “убираем из трансформера все” (или делаем линейным, или сильно урезаем):
- Your Transformer is Secretly Linear
- Убираем poistional encoding: The Impact of Positional Encoding on Length Generalization in Transformers
- Убираем аттеншн: Pretraining Without Attention, Mamba: Linear-Time Sequence Modeling with Selective State Spaces и прочие RWKV
- Убираем большую часть KV cache, MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding

BY я обучала одну модель




Share with your friend now:
group-telegram.com/def_model_train/1036

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. Despite Telegram's origins, its approach to users' security has privacy advocates worried. Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Telegram was co-founded by Pavel and Nikolai Durov, the brothers who had previously created VKontakte. VK is Russia’s equivalent of Facebook, a social network used for public and private messaging, audio and video sharing as well as online gaming. In January, SimpleWeb reported that VK was Russia’s fourth most-visited website, after Yandex, YouTube and Google’s Russian-language homepage. In 2016, Forbes’ Michael Solomon described Pavel Durov (pictured, below) as the “Mark Zuckerberg of Russia.”
from sg


Telegram я обучала одну модель
FROM American