Telegram Group & Telegram Channel
Показалось, что в предыдущем посте я недостаточно раскрыл тему того, что вообще делает из человека хорошего рисёрчера.

На эту тему написано множество книг (и ещё больше телегам-постов), но, надеюсь, моя точка зрения кому-то приглянется. Нижеприведённые качества обычно вырабатываются у людей за Ph.D., но, как мне кажется, их можно осознанно тренировать. Как? Записывайтесь на мои курсы осознанности.

Во-первых, (этот пойнт был и в предыдущем посте, но кто ж меня читает) у всех отличных исследователей, кого я знаю, есть неутолимая тяга разбираться в предмете. Где в модели не текут градиенты? Откуда берутся артефакты на картинках? На каких примерах происходят ошибки? Сходится ли модель на игрушечных данных? Последний вопрос – мой любимый; хочется уделить ему особое внимание. Дело в том, что в машинном обучении чаще всего вот эти вот все "настоящие данные" с "ground truth"ом – это всё дикий шумный лес, за которым порой бывает сложно разглядеть, куда, собственно, надо улучшать метод. 🤔

Приведу пример из одной из моих статей. Писал я её в ковидном заточении , когда я увидел на архиве статью под названием "Mincut pooling in Graph Neural Networks" (почему-то после публикации моей статьи её переименовали в куда более модное "Spectral Clustering with Graph Neural Networks for Graph Pooling" 🤔). Я начал играться с их лоссом, но на некоторых графах он у меня не сходился. Для дебага я написал простенький генератор синтетических данных – две гауссианы и k-NN граф на их основе – такой должен хорошо кластеризоваться. Потыкав с генератором, я заметил, что на нецентрированных данных MinCut лосс из статьи не работает. После этого достаточно было разделить лосс на две компоненты и посмотреть, как они оптимизируются в процессе обучения, чтобы понять, что в их статье (шок) никакой кластеризации графа не происходит – происходит только ортогонализация фичей вершин. Это позволило мне понять, куда копать, и написать неплохую статью, которую после трёх лет страданий всё же опубликовали в JMLR. Эти эксперименты, конечно, в финальную версию статьи не прошли.

Во-вторых, это умение отделять зёрна от плевел (pop quiz: кто помнит, кто такие плевелы?) в чужих статьях. Такое вот умение читать между строк и сквозь них 🤔 – вот это утвеждение сделано потому что авторам нужно было что-то сказать или они и правда проверили все остальные альтернативы? Правда ли в этом месте нужен вот этот компонент или его ввернули ради красивой теоремы в аппендиксе? Звучит довольно очевидно, но слишком часто мне приходится разубеждать инженеров, которые вычитывают в литературе какую-нибудь неподтверждённую дрянь и кидаются её реализовывать.

Перефразируя Камю, рисёрчера делает рисёрчером в большей степени то, о чём он умалчивает, нежели то, что он пишет в статьях. Вместе с подписчиками надеемся на то, что меня отпустит с пацанскими цитатами. 🐺
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/epsiloncorrect/165
Create:
Last Update:

Показалось, что в предыдущем посте я недостаточно раскрыл тему того, что вообще делает из человека хорошего рисёрчера.

На эту тему написано множество книг (и ещё больше телегам-постов), но, надеюсь, моя точка зрения кому-то приглянется. Нижеприведённые качества обычно вырабатываются у людей за Ph.D., но, как мне кажется, их можно осознанно тренировать. Как? Записывайтесь на мои курсы осознанности.

Во-первых, (этот пойнт был и в предыдущем посте, но кто ж меня читает) у всех отличных исследователей, кого я знаю, есть неутолимая тяга разбираться в предмете. Где в модели не текут градиенты? Откуда берутся артефакты на картинках? На каких примерах происходят ошибки? Сходится ли модель на игрушечных данных? Последний вопрос – мой любимый; хочется уделить ему особое внимание. Дело в том, что в машинном обучении чаще всего вот эти вот все "настоящие данные" с "ground truth"ом – это всё дикий шумный лес, за которым порой бывает сложно разглядеть, куда, собственно, надо улучшать метод. 🤔

Приведу пример из одной из моих статей. Писал я её в ковидном заточении , когда я увидел на архиве статью под названием "Mincut pooling in Graph Neural Networks" (почему-то после публикации моей статьи её переименовали в куда более модное "Spectral Clustering with Graph Neural Networks for Graph Pooling" 🤔). Я начал играться с их лоссом, но на некоторых графах он у меня не сходился. Для дебага я написал простенький генератор синтетических данных – две гауссианы и k-NN граф на их основе – такой должен хорошо кластеризоваться. Потыкав с генератором, я заметил, что на нецентрированных данных MinCut лосс из статьи не работает. После этого достаточно было разделить лосс на две компоненты и посмотреть, как они оптимизируются в процессе обучения, чтобы понять, что в их статье (шок) никакой кластеризации графа не происходит – происходит только ортогонализация фичей вершин. Это позволило мне понять, куда копать, и написать неплохую статью, которую после трёх лет страданий всё же опубликовали в JMLR. Эти эксперименты, конечно, в финальную версию статьи не прошли.

Во-вторых, это умение отделять зёрна от плевел (pop quiz: кто помнит, кто такие плевелы?) в чужих статьях. Такое вот умение читать между строк и сквозь них 🤔 – вот это утвеждение сделано потому что авторам нужно было что-то сказать или они и правда проверили все остальные альтернативы? Правда ли в этом месте нужен вот этот компонент или его ввернули ради красивой теоремы в аппендиксе? Звучит довольно очевидно, но слишком часто мне приходится разубеждать инженеров, которые вычитывают в литературе какую-нибудь неподтверждённую дрянь и кидаются её реализовывать.

Перефразируя Камю, рисёрчера делает рисёрчером в большей степени то, о чём он умалчивает, нежели то, что он пишет в статьях. Вместе с подписчиками надеемся на то, что меня отпустит с пацанскими цитатами. 🐺

BY epsilon correct


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/epsiloncorrect/165

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

If you initiate a Secret Chat, however, then these communications are end-to-end encrypted and are tied to the device you are using. That means it’s less convenient to access them across multiple platforms, but you are at far less risk of snooping. Back in the day, Secret Chats received some praise from the EFF, but the fact that its standard system isn’t as secure earned it some criticism. If you’re looking for something that is considered more reliable by privacy advocates, then Signal is the EFF’s preferred platform, although that too is not without some caveats. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised.
from sg


Telegram epsilon correct
FROM American