Telegram Group & Telegram Channel
В курсе "Основы байесовского вывода" сегодня говорили о двух важных общих сюжетах, пронизывающих всё машинное обучение.

СПбГУ — 2025.10.16 — Ближайшие соседи, проклятие размерности, разложение bias-variance-noise
(слайды, доска и ноутбук, как всегда, на странице курса)

Здесь логика изложения у меня такая: я начинаю с метода ближайших соседей и показываю, что на плоскости, там, где я могу нарисовать точки и разделяющие поверхности, он работает блестяще, может провести какую угодно разделяющую поверхность и вообще выглядит идеально. Возникает резонный вопрос: а вообще зачем нам всё машинное обучение тогда? Может, ближайших соседей достаточно, только решить проблемы с вычислительной сложностью (а их в целом можно решить), да и всё? Ответ на этот вопрос — проклятие размерности; почему и ближайшие соседи, и многие другие методы начинают ломаться, когда размерность пространства признаков растёт.

А второй сюжет начинается с основ статистической теории принятия решений: какая идеальная, наилучшая возможная функция предсказания? Какая у неё будет ожидаемая ошибка (спойлер: ненулевая, разумеется, в данных ведь есть шум)? А ту часть ошибки, которую мы контролируем, можно дальше разделить на две части: дисперсию, которая показывает, насколько модель сильно отклоняется от своего собственного ожидания в зависимости от конкретного датасета, и смещение, которое показывает, насколько это её ожидание далеко от идеальной функции предсказания. В результате получается легко интерпретируемый результат, который показывает один из главных компромиссов (tradeoffs) при выборе гиперпараметров моделей (например, коэффициента регуляризации): между смещением и дисперсией.
👍185



group-telegram.com/sinecor/667
Create:
Last Update:

В курсе "Основы байесовского вывода" сегодня говорили о двух важных общих сюжетах, пронизывающих всё машинное обучение.

СПбГУ — 2025.10.16 — Ближайшие соседи, проклятие размерности, разложение bias-variance-noise
(слайды, доска и ноутбук, как всегда, на странице курса)

Здесь логика изложения у меня такая: я начинаю с метода ближайших соседей и показываю, что на плоскости, там, где я могу нарисовать точки и разделяющие поверхности, он работает блестяще, может провести какую угодно разделяющую поверхность и вообще выглядит идеально. Возникает резонный вопрос: а вообще зачем нам всё машинное обучение тогда? Может, ближайших соседей достаточно, только решить проблемы с вычислительной сложностью (а их в целом можно решить), да и всё? Ответ на этот вопрос — проклятие размерности; почему и ближайшие соседи, и многие другие методы начинают ломаться, когда размерность пространства признаков растёт.

А второй сюжет начинается с основ статистической теории принятия решений: какая идеальная, наилучшая возможная функция предсказания? Какая у неё будет ожидаемая ошибка (спойлер: ненулевая, разумеется, в данных ведь есть шум)? А ту часть ошибки, которую мы контролируем, можно дальше разделить на две части: дисперсию, которая показывает, насколько модель сильно отклоняется от своего собственного ожидания в зависимости от конкретного датасета, и смещение, которое показывает, насколько это её ожидание далеко от идеальной функции предсказания. В результате получается легко интерпретируемый результат, который показывает один из главных компромиссов (tradeoffs) при выборе гиперпараметров моделей (например, коэффициента регуляризации): между смещением и дисперсией.

BY Sinекура




Share with your friend now:
group-telegram.com/sinecor/667

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number.
from sg


Telegram Sinекура
FROM American