Telegram Group & Telegram Channel
Forwarded from Нейроинтерфейсы (Sergei Shishkin)
Нейралинк тоже решил заняться генерацией искусственных мозговых данных

Neuralink сообщает об использовании им "мозгового симулятора" (brain simulator) для улучшения качества декодирования мозговых данных. Мол, интерфейсы мозг-компьютер подобны автономным автомобилям, поэтому "высококачественная симуляция моторной коры может ускорить проверку декодеров и дать возможность использовать методы оптимизации вроде обучения с подкреплением".

Некоторым ИИ-блогерам это показалось большим прогрессом, в духе успехов робототехники, "где sim2real позволил наконец-то научить роботов нормально ходить". Но об улучшении декодирования в сравнении с бейзлайном не сообщалось, так что очень похоже, что его (пока?) нет, и в реальном времени удается лишь приблизиться к точности декодера, обученного на реальных данных. (Видео есть в твите, причем там упоминается обезьяна Pager, хотя и не говорится, точно ли этот тот самый Пейджер, которого они когда-то показывали на известном видео, где он явно занимался читтерством). Собственно, они сами говорят, что находятся "in the early stages of generative brain modeling".

Обучение декодеров/классификаторов на синтетических данных -- тема, очень давно обсуждаемая в ИМК-сообществе, поскольку реальных данных всегда катастрофически не хватает. В нашей научной группе тоже кое-что в этом направлении делается (генерация ЭЭГ диффузионными моделями). Но пока что по-настоящему работающих решений никем предложено не было.

Стоит обратить внимание, что "симуляция моторной коры" тут пока что не более чем метафора -- на самом деле просто генерируется многоканальный сигнал, похожий на реальные сигналы, записываемые с неё. Но, конечно, при решении таких задач в принципе не исключено использование некоторых знаний об устройстве и функционировании коры.



group-telegram.com/neural_cell/232
Create:
Last Update:

Нейралинк тоже решил заняться генерацией искусственных мозговых данных

Neuralink сообщает об использовании им "мозгового симулятора" (brain simulator) для улучшения качества декодирования мозговых данных. Мол, интерфейсы мозг-компьютер подобны автономным автомобилям, поэтому "высококачественная симуляция моторной коры может ускорить проверку декодеров и дать возможность использовать методы оптимизации вроде обучения с подкреплением".

Некоторым ИИ-блогерам это показалось большим прогрессом, в духе успехов робототехники, "где sim2real позволил наконец-то научить роботов нормально ходить". Но об улучшении декодирования в сравнении с бейзлайном не сообщалось, так что очень похоже, что его (пока?) нет, и в реальном времени удается лишь приблизиться к точности декодера, обученного на реальных данных. (Видео есть в твите, причем там упоминается обезьяна Pager, хотя и не говорится, точно ли этот тот самый Пейджер, которого они когда-то показывали на известном видео, где он явно занимался читтерством). Собственно, они сами говорят, что находятся "in the early stages of generative brain modeling".

Обучение декодеров/классификаторов на синтетических данных -- тема, очень давно обсуждаемая в ИМК-сообществе, поскольку реальных данных всегда катастрофически не хватает. В нашей научной группе тоже кое-что в этом направлении делается (генерация ЭЭГ диффузионными моделями). Но пока что по-настоящему работающих решений никем предложено не было.

Стоит обратить внимание, что "симуляция моторной коры" тут пока что не более чем метафора -- на самом деле просто генерируется многоканальный сигнал, похожий на реальные сигналы, записываемые с неё. Но, конечно, при решении таких задач в принципе не исключено использование некоторых знаний об устройстве и функционировании коры.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/232

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. In 2018, Russia banned Telegram although it reversed the prohibition two years later.
from tr


Telegram the last neural cell
FROM American