Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/compmathweekly/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Компьютерная математика Weekly | Telegram Webview: compmathweekly/69 -
Telegram Group & Telegram Channel
возникла пауза в компьютерной математике, но попробуем постепенно продолжить

начинал уже ( https://www.group-telegram.com/tw/compmathweekly.com/45 ) разговор про подсчет количеств решений mod p

базовый пример здесь — плоские кривые: пишем уравнение на x и y с целыми коэффициентами и смотрим как растет количество решений mod p с ростом p

для линейных уравнений ничего интересного не происходит: сколько есть остатков, столько и точек на прямой

рациональная параметризация учит, что и для квадратных уравнений ничего особенно интересного не происходит (если только правильно учесть «точки на бесконечности»)

дальше последовательность выглядит как «один, два, много» — кубические кривые уже скрывают бесконечную сложность… но чтобы с чего-то начать:

если мы смотрим на число N(p) решений y²=x³+ax²+bx+c mod p (и всё гладко, что бы это ни значило… напр., кривая y²=x³ не подходит), то можно ожидать, что правая часть примерно с одинаковой вероятностью квадратичный вычет и квадратичный невычет… и если воспринимать здесь идею про случайность всерьез, то можно ожидать, что |N(p)-p| имеет порядок примерно √p

из (доказанных) гипотез Вейля следует, что |N(p)-p|⩽2√p, в частности, N(p)/p→1… а дальше можно посмотреть на произведение N(p)/p (по p⩽x) — и ожидается, что эта штука растет примерно как log(x)^r, где r — ранг нашей кривой (рациональные точки на кривой образуют коммутативную группу, речь идет про ее ранг)

последнее утверждение — это форма гипотезы BSD (такая… более рабоче-крестьянская форма: без L-функций)

хотел проверить это экспериментально на каких-то примерах, но пока выходит не очень (нужно считать количества точек для больших p, а это лучше делать не в лоб, а быстро считать символ Лежандра… все преодолимо, но пока пусть останется планом)



group-telegram.com/compmathweekly/69
Create:
Last Update:

возникла пауза в компьютерной математике, но попробуем постепенно продолжить

начинал уже ( https://www.group-telegram.com/tw/compmathweekly.com/45 ) разговор про подсчет количеств решений mod p

базовый пример здесь — плоские кривые: пишем уравнение на x и y с целыми коэффициентами и смотрим как растет количество решений mod p с ростом p

для линейных уравнений ничего интересного не происходит: сколько есть остатков, столько и точек на прямой

рациональная параметризация учит, что и для квадратных уравнений ничего особенно интересного не происходит (если только правильно учесть «точки на бесконечности»)

дальше последовательность выглядит как «один, два, много» — кубические кривые уже скрывают бесконечную сложность… но чтобы с чего-то начать:

если мы смотрим на число N(p) решений y²=x³+ax²+bx+c mod p (и всё гладко, что бы это ни значило… напр., кривая y²=x³ не подходит), то можно ожидать, что правая часть примерно с одинаковой вероятностью квадратичный вычет и квадратичный невычет… и если воспринимать здесь идею про случайность всерьез, то можно ожидать, что |N(p)-p| имеет порядок примерно √p

из (доказанных) гипотез Вейля следует, что |N(p)-p|⩽2√p, в частности, N(p)/p→1… а дальше можно посмотреть на произведение N(p)/p (по p⩽x) — и ожидается, что эта штука растет примерно как log(x)^r, где r — ранг нашей кривой (рациональные точки на кривой образуют коммутативную группу, речь идет про ее ранг)

последнее утверждение — это форма гипотезы BSD (такая… более рабоче-крестьянская форма: без L-функций)

хотел проверить это экспериментально на каких-то примерах, но пока выходит не очень (нужно считать количества точек для больших p, а это лучше делать не в лоб, а быстро считать символ Лежандра… все преодолимо, но пока пусть останется планом)

BY Компьютерная математика Weekly




Share with your friend now:
group-telegram.com/compmathweekly/69

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. Two days after Russia invaded Ukraine, an account on the Telegram messaging platform posing as President Volodymyr Zelenskiy urged his armed forces to surrender. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram.
from tw


Telegram Компьютерная математика Weekly
FROM American