Telegram Group & Telegram Channel
Forwarded from Covalue
Нашел качественную диссертацию с обзором состояния дел в model checking на 2010й год:

Weißenbacher, [2010] "Program Analysis with Interpolants"

Вкратце идею проверки моделей можно описать так: мы хотим автоматически верифицировать программы, для этого мы аппроксимируем их моделями, то есть автоматами или системами переходов с конечным набором состояний, задаём спецификацию (обычно в какой-то разновидности пропозициональной темпоральной логики) и с помощью поисковых алгоритмов и эвристик исчерпывающе перебираем состояния модели, проверяя что для них всех спецификация верна.

Концептуально этот подход описывается теорией моделей (одним из двух основных разделов логики, второй - это теория доказательств, на которой основана теория типов и proof assistants). Интересно, что в моделчекинге примерно раз в декаду сменяется доминирующая парадигма, в целом его таймлайн выглядит примерно так:

* 1980е - зарождение самой идеи MC из работ Эдмунда Кларка по вычислению неподвижных точек для систем доказательств в предикат-трансформерах, использование BDD для компактификации состояний
* 1990е - дальнейшее ужатие состояний через partial order reduction, появление предикат-абстракции и CEGAR - методов автоматического конструирования моделей из набора assertions о программе
* 2000е - SAT/SMT-революция и уход от BDD, быстрая аппроксимация через интерполяцию Крейга
* 2010е - Аарон Брэдли изобретает семейство алгоритмов PDR (property directed reachability), где процесс построение инварианта чередуется и взаимодействут с построением контрпримера, взаимно усекая пространства поиска
* 2020е - ажиотаж вокруг техник из машинного обучения

Первые три декады и основные их идеи расписаны в первых двух с половиной главах диссертации (вторая половина третьей и четвертая главы более технические).

#automatedreasoning



group-telegram.com/metaprogramming/404
Create:
Last Update:

Нашел качественную диссертацию с обзором состояния дел в model checking на 2010й год:

Weißenbacher, [2010] "Program Analysis with Interpolants"

Вкратце идею проверки моделей можно описать так: мы хотим автоматически верифицировать программы, для этого мы аппроксимируем их моделями, то есть автоматами или системами переходов с конечным набором состояний, задаём спецификацию (обычно в какой-то разновидности пропозициональной темпоральной логики) и с помощью поисковых алгоритмов и эвристик исчерпывающе перебираем состояния модели, проверяя что для них всех спецификация верна.

Концептуально этот подход описывается теорией моделей (одним из двух основных разделов логики, второй - это теория доказательств, на которой основана теория типов и proof assistants). Интересно, что в моделчекинге примерно раз в декаду сменяется доминирующая парадигма, в целом его таймлайн выглядит примерно так:

* 1980е - зарождение самой идеи MC из работ Эдмунда Кларка по вычислению неподвижных точек для систем доказательств в предикат-трансформерах, использование BDD для компактификации состояний
* 1990е - дальнейшее ужатие состояний через partial order reduction, появление предикат-абстракции и CEGAR - методов автоматического конструирования моделей из набора assertions о программе
* 2000е - SAT/SMT-революция и уход от BDD, быстрая аппроксимация через интерполяцию Крейга
* 2010е - Аарон Брэдли изобретает семейство алгоритмов PDR (property directed reachability), где процесс построение инварианта чередуется и взаимодействут с построением контрпримера, взаимно усекая пространства поиска
* 2020е - ажиотаж вокруг техник из машинного обучения

Первые три декады и основные их идеи расписаны в первых двух с половиной главах диссертации (вторая половина третьей и четвертая главы более технические).

#automatedreasoning

BY Metaprogramming


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/metaprogramming/404

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment.
from ua


Telegram Metaprogramming
FROM American