Telegram Group & Telegram Channel
Forwarded from Нейроинтерфейсы (Sergei Shishkin)
Нейралинк тоже решил заняться генерацией искусственных мозговых данных

Neuralink сообщает об использовании им "мозгового симулятора" (brain simulator) для улучшения качества декодирования мозговых данных. Мол, интерфейсы мозг-компьютер подобны автономным автомобилям, поэтому "высококачественная симуляция моторной коры может ускорить проверку декодеров и дать возможность использовать методы оптимизации вроде обучения с подкреплением".

Некоторым ИИ-блогерам это показалось большим прогрессом, в духе успехов робототехники, "где sim2real позволил наконец-то научить роботов нормально ходить". Но об улучшении декодирования в сравнении с бейзлайном не сообщалось, так что очень похоже, что его (пока?) нет, и в реальном времени удается лишь приблизиться к точности декодера, обученного на реальных данных. (Видео есть в твите, причем там упоминается обезьяна Pager, хотя и не говорится, точно ли этот тот самый Пейджер, которого они когда-то показывали на известном видео, где он явно занимался читтерством). Собственно, они сами говорят, что находятся "in the early stages of generative brain modeling".

Обучение декодеров/классификаторов на синтетических данных -- тема, очень давно обсуждаемая в ИМК-сообществе, поскольку реальных данных всегда катастрофически не хватает. В нашей научной группе тоже кое-что в этом направлении делается (генерация ЭЭГ диффузионными моделями). Но пока что по-настоящему работающих решений никем предложено не было.

Стоит обратить внимание, что "симуляция моторной коры" тут пока что не более чем метафора -- на самом деле просто генерируется многоканальный сигнал, похожий на реальные сигналы, записываемые с неё. Но, конечно, при решении таких задач в принципе не исключено использование некоторых знаний об устройстве и функционировании коры.



group-telegram.com/neural_cell/232
Create:
Last Update:

Нейралинк тоже решил заняться генерацией искусственных мозговых данных

Neuralink сообщает об использовании им "мозгового симулятора" (brain simulator) для улучшения качества декодирования мозговых данных. Мол, интерфейсы мозг-компьютер подобны автономным автомобилям, поэтому "высококачественная симуляция моторной коры может ускорить проверку декодеров и дать возможность использовать методы оптимизации вроде обучения с подкреплением".

Некоторым ИИ-блогерам это показалось большим прогрессом, в духе успехов робототехники, "где sim2real позволил наконец-то научить роботов нормально ходить". Но об улучшении декодирования в сравнении с бейзлайном не сообщалось, так что очень похоже, что его (пока?) нет, и в реальном времени удается лишь приблизиться к точности декодера, обученного на реальных данных. (Видео есть в твите, причем там упоминается обезьяна Pager, хотя и не говорится, точно ли этот тот самый Пейджер, которого они когда-то показывали на известном видео, где он явно занимался читтерством). Собственно, они сами говорят, что находятся "in the early stages of generative brain modeling".

Обучение декодеров/классификаторов на синтетических данных -- тема, очень давно обсуждаемая в ИМК-сообществе, поскольку реальных данных всегда катастрофически не хватает. В нашей научной группе тоже кое-что в этом направлении делается (генерация ЭЭГ диффузионными моделями). Но пока что по-настоящему работающих решений никем предложено не было.

Стоит обратить внимание, что "симуляция моторной коры" тут пока что не более чем метафора -- на самом деле просто генерируется многоканальный сигнал, похожий на реальные сигналы, записываемые с неё. Но, конечно, при решении таких задач в принципе не исключено использование некоторых знаний об устройстве и функционировании коры.

BY the last neural cell




Share with your friend now:
group-telegram.com/neural_cell/232

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The SC urges the public to refer to the SC’s I nvestor Alert List before investing. The list contains details of unauthorised websites, investment products, companies and individuals. Members of the public who suspect that they have been approached by unauthorised firms or individuals offering schemes that promise unrealistic returns But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. Under the Sebi Act, the regulator has the power to carry out search and seizure of books, registers, documents including electronics and digital devices from any person associated with the securities market. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields.
from ye


Telegram the last neural cell
FROM American