Telegram Group & Telegram Channel
Продолжаем анализировать Artificial Intelligence Index Report 2025. Начало тут.

1️⃣ ИИ и НИОКР в 2025: кто задаёт темп?

ИИ-революция начинается с науки и разработок. Первая глава AI Index 2025 показывает, как стремительно меняется ландшафт исследований: публикации, конференции, патенты, создание крупных LLM и опенсорсных программных продуктов, развитие аппаратных средств.

Главные факты:

1. Бурный рост публикаций.
Количество публикаций по ИИ утроилось за 10 лет — с ~102 000 в 2013 году до более чем 242 000 в 2023-м. Сейчас ИИ — почти половина всех публикаций о компьютерных науках (41.76% в 2023 году). По регионам лидировали Восточная Азия и Тихоокеанский регион (34.5% от общего числа), за ними следовали США, Европа и другие страны. Подавляющее большинство работ посвящено машинному обучению #ML, которое, как мы отмечали, сейчас развивается особенно стремительно.

2. Наука vs индустрия.
Академический сектор (университеты и исследовательские центры) остается поставщиком основной массы исследований — 85% публикаций. В то же время более 90% значимых ИИ-моделей создаются сегодня индустрией (еще в начале 2010-х абсолютным лидером были научные структуры).

3. Китай — основной конкурент США.
Китайцы впереди всех по общему количеству публикаций, а США сохраняют лидерство по качеству: именно американские исследователи больше всего присутствуют в топ-100 самых цитируемых работ.

4. Патентная гонка.
Количество патентов на ИИ выросло почти в 30 раз за последние 13 лет. Почти 70% всех выданных патентов приходится на долю Китая.

5. Модели растут в масштабах и аппетитах.
Каждые 5 месяцев удваивается вычислительная мощность, необходимая для обучения топовых моделей (как и прогнозировалось). Размеры датасетов для обучения LLM удваиваются каждые 8 месяцев.

6. Данные для обучения заканчиваются.
ИИ уже «съел» большую часть открытых данных интернета. Исследования показывают, что высококачественные данные могут исчерпаться к концу десятилетия. Это создает давление на индустрию: придется искать новые методы обучения — например, генерировать синтетические данные или создавать специализированные приватные датасеты.

7. Стоимость инференса падает.
Цена запроса к модели уровня GPT-3.5 обрушилась более чем в 280 раз за 18 месяцев, сделав ИИ-инструменты гораздо доступнее для разработчиков и компаний. Тренд на удешевление инференса мы уже не раз отмечали. Другая важная тенденция — усиление позиций опенсорса по сравнению с прориетарными моделями (тыц, тыц).

8. Аппаратная часть ускоряется.
Производительность оборудования для ИИ (FP16 операций в секунду) растет на 43% в год. Цены на чипы падают на 30% ежегодно, а энергоэффективность увеличивается на 40% в год. (Наш комментарий: драйвером роста здесь является развитие альтернативных платформ, не только GPU. Индустрия активно работает с архитектурами ARM и RISC-V, а также с различными ускорителями).

9. Энергоэффективность против выбросов.
Несмотря на рост энергоэффективности (см.), обучение моделей сопровождается всё большими выбросами CO₂. Например, обучение Llama 3.1 потребовало выбросов в 8 930 тонн CO₂ — в 500 раз больше годового следа обычного человека в США. Добавим, что проблема энергетического обеспечения потребностей ИИ становится всё более актуальной.

Вывод:
ИИ быстро эволюционирует. Но за ростом моделей стоит не только увеличение вычислений и данных, но и вызовы — энергопотребление, дефицит данных и необходимость нового подхода к этике ИИ.

👉 Продолжение следует...

#AI #ниокр #bigdata #экология #инференс #тренды #аналитика #AI_index_report_2025

🚀 ©ТехноТренды



group-telegram.com/technologies_trends/237
Create:
Last Update:

Продолжаем анализировать Artificial Intelligence Index Report 2025. Начало тут.

1️⃣ ИИ и НИОКР в 2025: кто задаёт темп?

ИИ-революция начинается с науки и разработок. Первая глава AI Index 2025 показывает, как стремительно меняется ландшафт исследований: публикации, конференции, патенты, создание крупных LLM и опенсорсных программных продуктов, развитие аппаратных средств.

Главные факты:

1. Бурный рост публикаций.
Количество публикаций по ИИ утроилось за 10 лет — с ~102 000 в 2013 году до более чем 242 000 в 2023-м. Сейчас ИИ — почти половина всех публикаций о компьютерных науках (41.76% в 2023 году). По регионам лидировали Восточная Азия и Тихоокеанский регион (34.5% от общего числа), за ними следовали США, Европа и другие страны. Подавляющее большинство работ посвящено машинному обучению #ML, которое, как мы отмечали, сейчас развивается особенно стремительно.

2. Наука vs индустрия.
Академический сектор (университеты и исследовательские центры) остается поставщиком основной массы исследований — 85% публикаций. В то же время более 90% значимых ИИ-моделей создаются сегодня индустрией (еще в начале 2010-х абсолютным лидером были научные структуры).

3. Китай — основной конкурент США.
Китайцы впереди всех по общему количеству публикаций, а США сохраняют лидерство по качеству: именно американские исследователи больше всего присутствуют в топ-100 самых цитируемых работ.

4. Патентная гонка.
Количество патентов на ИИ выросло почти в 30 раз за последние 13 лет. Почти 70% всех выданных патентов приходится на долю Китая.

5. Модели растут в масштабах и аппетитах.
Каждые 5 месяцев удваивается вычислительная мощность, необходимая для обучения топовых моделей (как и прогнозировалось). Размеры датасетов для обучения LLM удваиваются каждые 8 месяцев.

6. Данные для обучения заканчиваются.
ИИ уже «съел» большую часть открытых данных интернета. Исследования показывают, что высококачественные данные могут исчерпаться к концу десятилетия. Это создает давление на индустрию: придется искать новые методы обучения — например, генерировать синтетические данные или создавать специализированные приватные датасеты.

7. Стоимость инференса падает.
Цена запроса к модели уровня GPT-3.5 обрушилась более чем в 280 раз за 18 месяцев, сделав ИИ-инструменты гораздо доступнее для разработчиков и компаний. Тренд на удешевление инференса мы уже не раз отмечали. Другая важная тенденция — усиление позиций опенсорса по сравнению с прориетарными моделями (тыц, тыц).

8. Аппаратная часть ускоряется.
Производительность оборудования для ИИ (FP16 операций в секунду) растет на 43% в год. Цены на чипы падают на 30% ежегодно, а энергоэффективность увеличивается на 40% в год. (Наш комментарий: драйвером роста здесь является развитие альтернативных платформ, не только GPU. Индустрия активно работает с архитектурами ARM и RISC-V, а также с различными ускорителями).

9. Энергоэффективность против выбросов.
Несмотря на рост энергоэффективности (см.), обучение моделей сопровождается всё большими выбросами CO₂. Например, обучение Llama 3.1 потребовало выбросов в 8 930 тонн CO₂ — в 500 раз больше годового следа обычного человека в США. Добавим, что проблема энергетического обеспечения потребностей ИИ становится всё более актуальной.

Вывод:
ИИ быстро эволюционирует. Но за ростом моделей стоит не только увеличение вычислений и данных, но и вызовы — энергопотребление, дефицит данных и необходимость нового подхода к этике ИИ.

👉 Продолжение следует...

#AI #ниокр #bigdata #экология #инференс #тренды #аналитика #AI_index_report_2025

🚀 ©ТехноТренды

BY 📈 ТехноТренды: Технологии, Тренды, IT










Share with your friend now:
group-telegram.com/technologies_trends/237

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. On Feb. 27, however, he admitted from his Russian-language account that "Telegram channels are increasingly becoming a source of unverified information related to Ukrainian events." Perpetrators of these scams will create a public group on Telegram to promote these investment packages that are usually accompanied by fake testimonies and sometimes advertised as being Shariah-compliant. Interested investors will be asked to directly message the representatives to begin investing in the various investment packages offered. In this regard, Sebi collaborated with the Telecom Regulatory Authority of India (TRAI) to reduce the vulnerability of the securities market to manipulation through misuse of mass communication medium like bulk SMS. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital.
from us


Telegram 📈 ТехноТренды: Технологии, Тренды, IT
FROM American